Metamath Proof Explorer


Theorem ordintdif

Description: If B is smaller than A , then it equals the intersection of the difference. Exercise 11 in TakeutiZaring p. 44. (Contributed by Andrew Salmon, 14-Nov-2011)

Ref Expression
Assertion ordintdif Ord A Ord B A B B = A B

Proof

Step Hyp Ref Expression
1 ssdif0 A B A B =
2 1 necon3bbii ¬ A B A B
3 dfdif2 A B = x A | ¬ x B
4 3 inteqi A B = x A | ¬ x B
5 ordtri1 Ord A Ord B A B ¬ B A
6 5 con2bid Ord A Ord B B A ¬ A B
7 id Ord B Ord B
8 ordelord Ord A x A Ord x
9 ordtri1 Ord B Ord x B x ¬ x B
10 7 8 9 syl2anr Ord A x A Ord B B x ¬ x B
11 10 an32s Ord A Ord B x A B x ¬ x B
12 11 rabbidva Ord A Ord B x A | B x = x A | ¬ x B
13 12 inteqd Ord A Ord B x A | B x = x A | ¬ x B
14 intmin B A x A | B x = B
15 13 14 sylan9req Ord A Ord B B A x A | ¬ x B = B
16 15 ex Ord A Ord B B A x A | ¬ x B = B
17 6 16 sylbird Ord A Ord B ¬ A B x A | ¬ x B = B
18 17 3impia Ord A Ord B ¬ A B x A | ¬ x B = B
19 4 18 eqtr2id Ord A Ord B ¬ A B B = A B
20 2 19 syl3an3br Ord A Ord B A B B = A B