Metamath Proof Explorer


Theorem ordn2lp

Description: An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of BellMachover p. 469. (Contributed by NM, 3-Apr-1994)

Ref Expression
Assertion ordn2lp Ord A ¬ A B B A

Proof

Step Hyp Ref Expression
1 ordirr Ord A ¬ A A
2 ordtr Ord A Tr A
3 trel Tr A A B B A A A
4 2 3 syl Ord A A B B A A A
5 1 4 mtod Ord A ¬ A B B A