Metamath Proof Explorer


Theorem ordnbtwn

Description: There is no set between an ordinal class and its successor. Generalized Proposition 7.25 of TakeutiZaring p. 41. (Contributed by NM, 21-Jun-1998) (Proof shortened by JJ, 24-Sep-2021)

Ref Expression
Assertion ordnbtwn Ord A ¬ A B B suc A

Proof

Step Hyp Ref Expression
1 ordirr Ord A ¬ A A
2 ordn2lp Ord A ¬ A B B A
3 pm2.24 A B B A ¬ A B B A A A
4 eleq2 B = A A B A A
5 4 biimpac A B B = A A A
6 5 a1d A B B = A ¬ A B B A A A
7 3 6 jaodan A B B A B = A ¬ A B B A A A
8 2 7 syl5com Ord A A B B A B = A A A
9 1 8 mtod Ord A ¬ A B B A B = A
10 elsuci B suc A B A B = A
11 10 anim2i A B B suc A A B B A B = A
12 9 11 nsyl Ord A ¬ A B B suc A