Description: The class of finite ordinals _om is ordinal. Theorem 7.32 of TakeutiZaring p. 43. Theorem 1.22 of Schloeder p. 3. (Contributed by NM, 18-Oct-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordom |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trom | ||
| 2 | omsson | ||
| 3 | ordon | ||
| 4 | trssord | ||
| 5 | 1 2 3 4 | mp3an |