Metamath Proof Explorer


Theorem ordpinq

Description: Ordering of positive fractions in terms of positive integers. (Contributed by NM, 13-Feb-1996) (Revised by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Assertion ordpinq A 𝑸 B 𝑸 A < 𝑸 B 1 st A 𝑵 2 nd B < 𝑵 1 st B 𝑵 2 nd A

Proof

Step Hyp Ref Expression
1 brinxp A 𝑸 B 𝑸 A < 𝑝𝑸 B A < 𝑝𝑸 𝑸 × 𝑸 B
2 df-ltnq < 𝑸 = < 𝑝𝑸 𝑸 × 𝑸
3 2 breqi A < 𝑸 B A < 𝑝𝑸 𝑸 × 𝑸 B
4 1 3 bitr4di A 𝑸 B 𝑸 A < 𝑝𝑸 B A < 𝑸 B
5 relxp Rel 𝑵 × 𝑵
6 elpqn A 𝑸 A 𝑵 × 𝑵
7 1st2nd Rel 𝑵 × 𝑵 A 𝑵 × 𝑵 A = 1 st A 2 nd A
8 5 6 7 sylancr A 𝑸 A = 1 st A 2 nd A
9 elpqn B 𝑸 B 𝑵 × 𝑵
10 1st2nd Rel 𝑵 × 𝑵 B 𝑵 × 𝑵 B = 1 st B 2 nd B
11 5 9 10 sylancr B 𝑸 B = 1 st B 2 nd B
12 8 11 breqan12d A 𝑸 B 𝑸 A < 𝑝𝑸 B 1 st A 2 nd A < 𝑝𝑸 1 st B 2 nd B
13 ordpipq 1 st A 2 nd A < 𝑝𝑸 1 st B 2 nd B 1 st A 𝑵 2 nd B < 𝑵 1 st B 𝑵 2 nd A
14 12 13 bitrdi A 𝑸 B 𝑸 A < 𝑝𝑸 B 1 st A 𝑵 2 nd B < 𝑵 1 st B 𝑵 2 nd A
15 4 14 bitr3d A 𝑸 B 𝑸 A < 𝑸 B 1 st A 𝑵 2 nd B < 𝑵 1 st B 𝑵 2 nd A