Metamath Proof Explorer


Theorem ordsseleq

Description: For ordinal classes, inclusion is equivalent to membership or equality. (Contributed by NM, 25-Nov-1995) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ordsseleq Ord A Ord B A B A B A = B

Proof

Step Hyp Ref Expression
1 sspss A B A B A = B
2 ordelpss Ord A Ord B A B A B
3 2 orbi1d Ord A Ord B A B A = B A B A = B
4 1 3 bitr4id Ord A Ord B A B A B A = B