Metamath Proof Explorer


Theorem ordsssuc

Description: An ordinal is a subset of another ordinal if and only if it belongs to its successor. (Contributed by NM, 28-Nov-2003)

Ref Expression
Assertion ordsssuc A On Ord B A B A suc B

Proof

Step Hyp Ref Expression
1 eloni A On Ord A
2 ordsseleq Ord A Ord B A B A B A = B
3 1 2 sylan A On Ord B A B A B A = B
4 elsucg A On A suc B A B A = B
5 4 adantr A On Ord B A suc B A B A = B
6 3 5 bitr4d A On Ord B A B A suc B