Description: An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005) (Proof shortened by Andrew Salmon, 12-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsssuc2 | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elong | |
|
| 2 | 1 | biimprd | |
| 3 | 2 | anim1d | |
| 4 | onsssuc | |
|
| 5 | 3 4 | syl6 | |
| 6 | annim | |
|
| 7 | ssexg | |
|
| 8 | 7 | ex | |
| 9 | elex | |
|
| 10 | 9 | a1d | |
| 11 | 8 10 | pm5.21ni | |
| 12 | 6 11 | sylbi | |
| 13 | 12 | expcom | |
| 14 | 13 | adantld | |
| 15 | 5 14 | pm2.61i | |