Metamath Proof Explorer


Theorem ordsssuc2

Description: An ordinal subset of an ordinal number belongs to its successor. (Contributed by NM, 1-Feb-2005) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion ordsssuc2 Ord A B On A B A suc B

Proof

Step Hyp Ref Expression
1 elong A V A On Ord A
2 1 biimprd A V Ord A A On
3 2 anim1d A V Ord A B On A On B On
4 onsssuc A On B On A B A suc B
5 3 4 syl6 A V Ord A B On A B A suc B
6 annim B On ¬ A V ¬ B On A V
7 ssexg A B B On A V
8 7 ex A B B On A V
9 elex A suc B A V
10 9 a1d A suc B B On A V
11 8 10 pm5.21ni ¬ B On A V A B A suc B
12 6 11 sylbi B On ¬ A V A B A suc B
13 12 expcom ¬ A V B On A B A suc B
14 13 adantld ¬ A V Ord A B On A B A suc B
15 5 14 pm2.61i Ord A B On A B A suc B