Metamath Proof Explorer


Theorem ordssun

Description: Property of a subclass of the maximum (i.e. union) of two ordinals. (Contributed by NM, 28-Nov-2003)

Ref Expression
Assertion ordssun Ord B Ord C A B C A B A C

Proof

Step Hyp Ref Expression
1 ordtri2or2 Ord B Ord C B C C B
2 ssequn1 B C B C = C
3 sseq2 B C = C A B C A C
4 2 3 sylbi B C A B C A C
5 olc A C A B A C
6 4 5 syl6bi B C A B C A B A C
7 ssequn2 C B B C = B
8 sseq2 B C = B A B C A B
9 7 8 sylbi C B A B C A B
10 orc A B A B A C
11 9 10 syl6bi C B A B C A B A C
12 6 11 jaoi B C C B A B C A B A C
13 1 12 syl Ord B Ord C A B C A B A C
14 ssun A B A C A B C
15 13 14 impbid1 Ord B Ord C A B C A B A C