Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinals (continued)
ordsuc
Next ⟩
ordpwsuc
Metamath Proof Explorer
Ascii
Unicode
Theorem
ordsuc
Description:
The successor of an ordinal class is ordinal.
(Contributed by
NM
, 3-Apr-1995)
Ref
Expression
Assertion
ordsuc
⊢
Ord
⁡
A
↔
Ord
⁡
suc
⁡
A
Proof
Step
Hyp
Ref
Expression
1
elong
⊢
A
∈
V
→
A
∈
On
↔
Ord
⁡
A
2
suceloni
⊢
A
∈
On
→
suc
⁡
A
∈
On
3
eloni
⊢
suc
⁡
A
∈
On
→
Ord
⁡
suc
⁡
A
4
2
3
syl
⊢
A
∈
On
→
Ord
⁡
suc
⁡
A
5
1
4
syl6bir
⊢
A
∈
V
→
Ord
⁡
A
→
Ord
⁡
suc
⁡
A
6
sucidg
⊢
A
∈
V
→
A
∈
suc
⁡
A
7
ordelord
⊢
Ord
⁡
suc
⁡
A
∧
A
∈
suc
⁡
A
→
Ord
⁡
A
8
7
ex
⊢
Ord
⁡
suc
⁡
A
→
A
∈
suc
⁡
A
→
Ord
⁡
A
9
6
8
syl5com
⊢
A
∈
V
→
Ord
⁡
suc
⁡
A
→
Ord
⁡
A
10
5
9
impbid
⊢
A
∈
V
→
Ord
⁡
A
↔
Ord
⁡
suc
⁡
A
11
sucprc
⊢
¬
A
∈
V
→
suc
⁡
A
=
A
12
11
eqcomd
⊢
¬
A
∈
V
→
A
=
suc
⁡
A
13
ordeq
⊢
A
=
suc
⁡
A
→
Ord
⁡
A
↔
Ord
⁡
suc
⁡
A
14
12
13
syl
⊢
¬
A
∈
V
→
Ord
⁡
A
↔
Ord
⁡
suc
⁡
A
15
10
14
pm2.61i
⊢
Ord
⁡
A
↔
Ord
⁡
suc
⁡
A