Metamath Proof Explorer


Theorem ordsucOLD

Description: Obsolete version of ordsuc as of 6-Jan-2025. (Contributed by NM, 3-Apr-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ordsucOLD Ord A Ord suc A

Proof

Step Hyp Ref Expression
1 elong A V A On Ord A
2 onsuc A On suc A On
3 eloni suc A On Ord suc A
4 2 3 syl A On Ord suc A
5 1 4 syl6bir A V Ord A Ord suc A
6 sucidg A V A suc A
7 ordelord Ord suc A A suc A Ord A
8 7 ex Ord suc A A suc A Ord A
9 6 8 syl5com A V Ord suc A Ord A
10 5 9 impbid A V Ord A Ord suc A
11 sucprc ¬ A V suc A = A
12 11 eqcomd ¬ A V A = suc A
13 ordeq A = suc A Ord A Ord suc A
14 12 13 syl ¬ A V Ord A Ord suc A
15 10 14 pm2.61i Ord A Ord suc A