Metamath Proof Explorer


Theorem ordsucelsuc

Description: Membership is inherited by successors. Generalization of Exercise 9 of TakeutiZaring p. 42. (Contributed by NM, 22-Jun-1998) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion ordsucelsuc Ord B A B suc A suc B

Proof

Step Hyp Ref Expression
1 simpl Ord B A B Ord B
2 ordelord Ord B A B Ord A
3 1 2 jca Ord B A B Ord B Ord A
4 simpl Ord B suc A suc B Ord B
5 ordsuc Ord B Ord suc B
6 ordelord Ord suc B suc A suc B Ord suc A
7 ordsuc Ord A Ord suc A
8 6 7 sylibr Ord suc B suc A suc B Ord A
9 5 8 sylanb Ord B suc A suc B Ord A
10 4 9 jca Ord B suc A suc B Ord B Ord A
11 ordsseleq Ord suc A Ord B suc A B suc A B suc A = B
12 7 11 sylanb Ord A Ord B suc A B suc A B suc A = B
13 12 ancoms Ord B Ord A suc A B suc A B suc A = B
14 13 adantl A V Ord B Ord A suc A B suc A B suc A = B
15 ordsucss Ord B A B suc A B
16 15 ad2antrl A V Ord B Ord A A B suc A B
17 sucssel A V suc A B A B
18 17 adantr A V Ord B Ord A suc A B A B
19 16 18 impbid A V Ord B Ord A A B suc A B
20 sucexb A V suc A V
21 elsucg suc A V suc A suc B suc A B suc A = B
22 20 21 sylbi A V suc A suc B suc A B suc A = B
23 22 adantr A V Ord B Ord A suc A suc B suc A B suc A = B
24 14 19 23 3bitr4d A V Ord B Ord A A B suc A suc B
25 24 ex A V Ord B Ord A A B suc A suc B
26 elex A B A V
27 elex suc A suc B suc A V
28 27 20 sylibr suc A suc B A V
29 26 28 pm5.21ni ¬ A V A B suc A suc B
30 29 a1d ¬ A V Ord B Ord A A B suc A suc B
31 25 30 pm2.61i Ord B Ord A A B suc A suc B
32 3 10 31 pm5.21nd Ord B A B suc A suc B