Metamath Proof Explorer


Theorem ordsuci

Description: The successor of an ordinal class is an ordinal class. Remark 1.5 of Schloeder p. 1. (Contributed by NM, 6-Jun-1994) Extract and adapt from a subproof of onsuc . (Revised by BTernaryTau, 6-Jan-2025) (Proof shortened by BJ, 11-Jan-2025)

Ref Expression
Assertion ordsuci Ord A Ord suc A

Proof

Step Hyp Ref Expression
1 ordtr Ord A Tr A
2 suctr Tr A Tr suc A
3 1 2 syl Ord A Tr suc A
4 df-suc suc A = A A
5 ordsson Ord A A On
6 elon2 A On Ord A A V
7 snssi A On A On
8 6 7 sylbir Ord A A V A On
9 snprc ¬ A V A =
10 9 biimpi ¬ A V A =
11 0ss On
12 10 11 eqsstrdi ¬ A V A On
13 12 adantl Ord A ¬ A V A On
14 8 13 pm2.61dan Ord A A On
15 5 14 unssd Ord A A A On
16 4 15 eqsstrid Ord A suc A On
17 ordon Ord On
18 17 a1i Ord A Ord On
19 trssord Tr suc A suc A On Ord On Ord suc A
20 3 16 18 19 syl3anc Ord A Ord suc A