Metamath Proof Explorer


Theorem ordsucss

Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998)

Ref Expression
Assertion ordsucss Ord B A B suc A B

Proof

Step Hyp Ref Expression
1 ordelord Ord B A B Ord A
2 ordnbtwn Ord A ¬ A B B suc A
3 imnan A B ¬ B suc A ¬ A B B suc A
4 2 3 sylibr Ord A A B ¬ B suc A
5 4 adantr Ord A Ord B A B ¬ B suc A
6 ordsuc Ord A Ord suc A
7 ordtri1 Ord suc A Ord B suc A B ¬ B suc A
8 6 7 sylanb Ord A Ord B suc A B ¬ B suc A
9 5 8 sylibrd Ord A Ord B A B suc A B
10 1 9 sylan Ord B A B Ord B A B suc A B
11 10 exp31 Ord B A B Ord B A B suc A B
12 11 pm2.43b A B Ord B A B suc A B
13 12 pm2.43b Ord B A B suc A B