Metamath Proof Explorer


Theorem ordsucsssuc

Description: The subclass relationship between two ordinal classes is inherited by their successors. (Contributed by NM, 4-Oct-2003)

Ref Expression
Assertion ordsucsssuc Ord A Ord B A B suc A suc B

Proof

Step Hyp Ref Expression
1 ordsucelsuc Ord A B A suc B suc A
2 1 notbid Ord A ¬ B A ¬ suc B suc A
3 2 adantr Ord A Ord B ¬ B A ¬ suc B suc A
4 ordtri1 Ord A Ord B A B ¬ B A
5 ordsuc Ord A Ord suc A
6 ordsuc Ord B Ord suc B
7 ordtri1 Ord suc A Ord suc B suc A suc B ¬ suc B suc A
8 5 6 7 syl2anb Ord A Ord B suc A suc B ¬ suc B suc A
9 3 4 8 3bitr4d Ord A Ord B A B suc A suc B