Metamath Proof Explorer


Theorem ordsucuniel

Description: Given an element A of the union of an ordinal B , suc A is an element of B itself. (Contributed by Scott Fenton, 28-Mar-2012) (Proof shortened by Mario Carneiro, 29-May-2015)

Ref Expression
Assertion ordsucuniel Ord B A B suc A B

Proof

Step Hyp Ref Expression
1 orduni Ord B Ord B
2 ordelord Ord B A B Ord A
3 2 ex Ord B A B Ord A
4 1 3 syl Ord B A B Ord A
5 ordelord Ord B suc A B Ord suc A
6 ordsuc Ord A Ord suc A
7 5 6 sylibr Ord B suc A B Ord A
8 7 ex Ord B suc A B Ord A
9 ordsson Ord B B On
10 ordunisssuc B On Ord A B A B suc A
11 9 10 sylan Ord B Ord A B A B suc A
12 ordtri1 Ord B Ord A B A ¬ A B
13 1 12 sylan Ord B Ord A B A ¬ A B
14 ordtri1 Ord B Ord suc A B suc A ¬ suc A B
15 6 14 sylan2b Ord B Ord A B suc A ¬ suc A B
16 11 13 15 3bitr3d Ord B Ord A ¬ A B ¬ suc A B
17 16 con4bid Ord B Ord A A B suc A B
18 17 ex Ord B Ord A A B suc A B
19 4 8 18 pm5.21ndd Ord B A B suc A B