Description: Lemma for ordtbas . In a total order, unbounded-above intervals are closed under intersection. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtval.1 | |
|
| ordtval.2 | |
||
| Assertion | ordtbaslem | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtval.1 | |
|
| 2 | ordtval.2 | |
|
| 3 | 3anrot | |
|
| 4 | 1 | tsrlemax | |
| 5 | 3 4 | sylan2br | |
| 6 | 5 | 3exp2 | |
| 7 | 6 | imp42 | |
| 8 | 7 | notbid | |
| 9 | ioran | |
|
| 10 | 8 9 | bitrdi | |
| 11 | 10 | rabbidva | |
| 12 | ifcl | |
|
| 13 | 12 | ancoms | |
| 14 | dmexg | |
|
| 15 | 1 14 | eqeltrid | |
| 16 | 15 | adantr | |
| 17 | rabexg | |
|
| 18 | 16 17 | syl | |
| 19 | 11 18 | eqeltrd | |
| 20 | eqid | |
|
| 21 | breq2 | |
|
| 22 | 21 | notbid | |
| 23 | 22 | rabbidv | |
| 24 | 20 23 | elrnmpt1s | |
| 25 | 24 2 | eleqtrrdi | |
| 26 | 13 19 25 | syl2an2 | |
| 27 | 11 26 | eqeltrrd | |
| 28 | 27 | ralrimivva | |
| 29 | rabexg | |
|
| 30 | 15 29 | syl | |
| 31 | 30 | ralrimivw | |
| 32 | breq2 | |
|
| 33 | 32 | notbid | |
| 34 | 33 | rabbidv | |
| 35 | 34 | cbvmptv | |
| 36 | ineq1 | |
|
| 37 | inrab | |
|
| 38 | 36 37 | eqtrdi | |
| 39 | 38 | eleq1d | |
| 40 | 39 | ralbidv | |
| 41 | 35 40 | ralrnmptw | |
| 42 | 31 41 | syl | |
| 43 | 28 42 | mpbird | |
| 44 | rabexg | |
|
| 45 | 15 44 | syl | |
| 46 | 45 | ralrimivw | |
| 47 | breq2 | |
|
| 48 | 47 | notbid | |
| 49 | 48 | rabbidv | |
| 50 | 49 | cbvmptv | |
| 51 | ineq2 | |
|
| 52 | 51 | eleq1d | |
| 53 | 50 52 | ralrnmptw | |
| 54 | 46 53 | syl | |
| 55 | 54 | ralbidv | |
| 56 | 43 55 | mpbird | |
| 57 | 2 | raleqi | |
| 58 | 2 57 | raleqbii | |
| 59 | 56 58 | sylibr | |
| 60 | 15 | pwexd | |
| 61 | ssrab2 | |
|
| 62 | 15 | adantr | |
| 63 | elpw2g | |
|
| 64 | 62 63 | syl | |
| 65 | 61 64 | mpbiri | |
| 66 | 65 | fmpttd | |
| 67 | 66 | frnd | |
| 68 | 2 67 | eqsstrid | |
| 69 | 60 68 | ssexd | |
| 70 | inficl | |
|
| 71 | 69 70 | syl | |
| 72 | 59 71 | mpbid | |