Metamath Proof Explorer


Theorem ordtcld2

Description: An upward ray [ P , +oo ) is closed. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis ordttopon.3 X = dom R
Assertion ordtcld2 R V P X x X | P R x Clsd ordTop R

Proof

Step Hyp Ref Expression
1 ordttopon.3 X = dom R
2 ssrab2 x X | P R x X
3 1 ordttopon R V ordTop R TopOn X
4 3 adantr R V P X ordTop R TopOn X
5 toponuni ordTop R TopOn X X = ordTop R
6 4 5 syl R V P X X = ordTop R
7 2 6 sseqtrid R V P X x X | P R x ordTop R
8 notrab X x X | P R x = x X | ¬ P R x
9 6 difeq1d R V P X X x X | P R x = ordTop R x X | P R x
10 8 9 eqtr3id R V P X x X | ¬ P R x = ordTop R x X | P R x
11 1 ordtopn2 R V P X x X | ¬ P R x ordTop R
12 10 11 eqeltrrd R V P X ordTop R x X | P R x ordTop R
13 topontop ordTop R TopOn X ordTop R Top
14 eqid ordTop R = ordTop R
15 14 iscld ordTop R Top x X | P R x Clsd ordTop R x X | P R x ordTop R ordTop R x X | P R x ordTop R
16 4 13 15 3syl R V P X x X | P R x Clsd ordTop R x X | P R x ordTop R ordTop R x X | P R x ordTop R
17 7 12 16 mpbir2and R V P X x X | P R x Clsd ordTop R