Database
BASIC TOPOLOGY
Topology
Order topology
ordtcld2
Next ⟩
ordtcld3
Metamath Proof Explorer
Ascii
Unicode
Theorem
ordtcld2
Description:
An upward ray
[ P , +oo )
is closed.
(Contributed by
Mario Carneiro
, 3-Sep-2015)
Ref
Expression
Hypothesis
ordttopon.3
⊢
X
=
dom
⁡
R
Assertion
ordtcld2
⊢
R
∈
V
∧
P
∈
X
→
x
∈
X
|
P
R
x
∈
Clsd
⁡
ordTop
⁡
R
Proof
Step
Hyp
Ref
Expression
1
ordttopon.3
⊢
X
=
dom
⁡
R
2
ssrab2
⊢
x
∈
X
|
P
R
x
⊆
X
3
1
ordttopon
⊢
R
∈
V
→
ordTop
⁡
R
∈
TopOn
⁡
X
4
3
adantr
⊢
R
∈
V
∧
P
∈
X
→
ordTop
⁡
R
∈
TopOn
⁡
X
5
toponuni
⊢
ordTop
⁡
R
∈
TopOn
⁡
X
→
X
=
⋃
ordTop
⁡
R
6
4
5
syl
⊢
R
∈
V
∧
P
∈
X
→
X
=
⋃
ordTop
⁡
R
7
2
6
sseqtrid
⊢
R
∈
V
∧
P
∈
X
→
x
∈
X
|
P
R
x
⊆
⋃
ordTop
⁡
R
8
notrab
⊢
X
∖
x
∈
X
|
P
R
x
=
x
∈
X
|
¬
P
R
x
9
6
difeq1d
⊢
R
∈
V
∧
P
∈
X
→
X
∖
x
∈
X
|
P
R
x
=
⋃
ordTop
⁡
R
∖
x
∈
X
|
P
R
x
10
8
9
eqtr3id
⊢
R
∈
V
∧
P
∈
X
→
x
∈
X
|
¬
P
R
x
=
⋃
ordTop
⁡
R
∖
x
∈
X
|
P
R
x
11
1
ordtopn2
⊢
R
∈
V
∧
P
∈
X
→
x
∈
X
|
¬
P
R
x
∈
ordTop
⁡
R
12
10
11
eqeltrrd
⊢
R
∈
V
∧
P
∈
X
→
⋃
ordTop
⁡
R
∖
x
∈
X
|
P
R
x
∈
ordTop
⁡
R
13
topontop
⊢
ordTop
⁡
R
∈
TopOn
⁡
X
→
ordTop
⁡
R
∈
Top
14
eqid
⊢
⋃
ordTop
⁡
R
=
⋃
ordTop
⁡
R
15
14
iscld
⊢
ordTop
⁡
R
∈
Top
→
x
∈
X
|
P
R
x
∈
Clsd
⁡
ordTop
⁡
R
↔
x
∈
X
|
P
R
x
⊆
⋃
ordTop
⁡
R
∧
⋃
ordTop
⁡
R
∖
x
∈
X
|
P
R
x
∈
ordTop
⁡
R
16
4
13
15
3syl
⊢
R
∈
V
∧
P
∈
X
→
x
∈
X
|
P
R
x
∈
Clsd
⁡
ordTop
⁡
R
↔
x
∈
X
|
P
R
x
⊆
⋃
ordTop
⁡
R
∧
⋃
ordTop
⁡
R
∖
x
∈
X
|
P
R
x
∈
ordTop
⁡
R
17
7
12
16
mpbir2and
⊢
R
∈
V
∧
P
∈
X
→
x
∈
X
|
P
R
x
∈
Clsd
⁡
ordTop
⁡
R