Database
BASIC TOPOLOGY
Topology
Order topology
ordtcld3
Next ⟩
ordttop
Metamath Proof Explorer
Ascii
Unicode
Theorem
ordtcld3
Description:
A closed interval
[ A , B ]
is closed.
(Contributed by
Mario Carneiro
, 3-Sep-2015)
Ref
Expression
Hypothesis
ordttopon.3
⊢
X
=
dom
⁡
R
Assertion
ordtcld3
⊢
R
∈
V
∧
A
∈
X
∧
B
∈
X
→
x
∈
X
|
A
R
x
∧
x
R
B
∈
Clsd
⁡
ordTop
⁡
R
Proof
Step
Hyp
Ref
Expression
1
ordttopon.3
⊢
X
=
dom
⁡
R
2
inrab
⊢
x
∈
X
|
A
R
x
∩
x
∈
X
|
x
R
B
=
x
∈
X
|
A
R
x
∧
x
R
B
3
1
ordtcld2
⊢
R
∈
V
∧
A
∈
X
→
x
∈
X
|
A
R
x
∈
Clsd
⁡
ordTop
⁡
R
4
3
3adant3
⊢
R
∈
V
∧
A
∈
X
∧
B
∈
X
→
x
∈
X
|
A
R
x
∈
Clsd
⁡
ordTop
⁡
R
5
1
ordtcld1
⊢
R
∈
V
∧
B
∈
X
→
x
∈
X
|
x
R
B
∈
Clsd
⁡
ordTop
⁡
R
6
incld
⊢
x
∈
X
|
A
R
x
∈
Clsd
⁡
ordTop
⁡
R
∧
x
∈
X
|
x
R
B
∈
Clsd
⁡
ordTop
⁡
R
→
x
∈
X
|
A
R
x
∩
x
∈
X
|
x
R
B
∈
Clsd
⁡
ordTop
⁡
R
7
4
5
6
3imp3i2an
⊢
R
∈
V
∧
A
∈
X
∧
B
∈
X
→
x
∈
X
|
A
R
x
∩
x
∈
X
|
x
R
B
∈
Clsd
⁡
ordTop
⁡
R
8
2
7
eqeltrrid
⊢
R
∈
V
∧
A
∈
X
∧
B
∈
X
→
x
∈
X
|
A
R
x
∧
x
R
B
∈
Clsd
⁡
ordTop
⁡
R