Metamath Proof Explorer


Theorem ordtcld3

Description: A closed interval [ A , B ] is closed. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis ordttopon.3 X = dom R
Assertion ordtcld3 R V A X B X x X | A R x x R B Clsd ordTop R

Proof

Step Hyp Ref Expression
1 ordttopon.3 X = dom R
2 inrab x X | A R x x X | x R B = x X | A R x x R B
3 1 ordtcld2 R V A X x X | A R x Clsd ordTop R
4 3 3adant3 R V A X B X x X | A R x Clsd ordTop R
5 1 ordtcld1 R V B X x X | x R B Clsd ordTop R
6 incld x X | A R x Clsd ordTop R x X | x R B Clsd ordTop R x X | A R x x X | x R B Clsd ordTop R
7 4 5 6 3imp3i2an R V A X B X x X | A R x x X | x R B Clsd ordTop R
8 2 7 eqeltrrid R V A X B X x X | A R x x R B Clsd ordTop R