Metamath Proof Explorer


Theorem ordthauslem

Description: Lemma for ordthaus . (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypothesis ordthauslem.1 X = dom R
Assertion ordthauslem R TosetRel A X B X A R B A B m ordTop R n ordTop R A m B n m n =

Proof

Step Hyp Ref Expression
1 ordthauslem.1 X = dom R
2 simpll1 R TosetRel A X B X A R B A B x X | ¬ B R x ¬ x R A = R TosetRel
3 simpll3 R TosetRel A X B X A R B A B x X | ¬ B R x ¬ x R A = B X
4 1 ordtopn2 R TosetRel B X x X | ¬ B R x ordTop R
5 2 3 4 syl2anc R TosetRel A X B X A R B A B x X | ¬ B R x ¬ x R A = x X | ¬ B R x ordTop R
6 simpll2 R TosetRel A X B X A R B A B x X | ¬ B R x ¬ x R A = A X
7 1 ordtopn1 R TosetRel A X x X | ¬ x R A ordTop R
8 2 6 7 syl2anc R TosetRel A X B X A R B A B x X | ¬ B R x ¬ x R A = x X | ¬ x R A ordTop R
9 breq2 x = A B R x B R A
10 9 notbid x = A ¬ B R x ¬ B R A
11 simprr R TosetRel A X B X A R B A B A B
12 simpl1 R TosetRel A X B X A R B A B R TosetRel
13 tsrps R TosetRel R PosetRel
14 12 13 syl R TosetRel A X B X A R B A B R PosetRel
15 simprl R TosetRel A X B X A R B A B A R B
16 psasym R PosetRel A R B B R A A = B
17 16 3expia R PosetRel A R B B R A A = B
18 14 15 17 syl2anc R TosetRel A X B X A R B A B B R A A = B
19 18 necon3ad R TosetRel A X B X A R B A B A B ¬ B R A
20 11 19 mpd R TosetRel A X B X A R B A B ¬ B R A
21 20 adantr R TosetRel A X B X A R B A B x X | ¬ B R x ¬ x R A = ¬ B R A
22 10 6 21 elrabd R TosetRel A X B X A R B A B x X | ¬ B R x ¬ x R A = A x X | ¬ B R x
23 breq1 x = B x R A B R A
24 23 notbid x = B ¬ x R A ¬ B R A
25 24 3 21 elrabd R TosetRel A X B X A R B A B x X | ¬ B R x ¬ x R A = B x X | ¬ x R A
26 simpr R TosetRel A X B X A R B A B x X | ¬ B R x ¬ x R A = x X | ¬ B R x ¬ x R A =
27 eleq2 m = x X | ¬ B R x A m A x X | ¬ B R x
28 ineq1 m = x X | ¬ B R x m n = x X | ¬ B R x n
29 28 eqeq1d m = x X | ¬ B R x m n = x X | ¬ B R x n =
30 27 29 3anbi13d m = x X | ¬ B R x A m B n m n = A x X | ¬ B R x B n x X | ¬ B R x n =
31 eleq2 n = x X | ¬ x R A B n B x X | ¬ x R A
32 ineq2 n = x X | ¬ x R A x X | ¬ B R x n = x X | ¬ B R x x X | ¬ x R A
33 inrab x X | ¬ B R x x X | ¬ x R A = x X | ¬ B R x ¬ x R A
34 32 33 eqtrdi n = x X | ¬ x R A x X | ¬ B R x n = x X | ¬ B R x ¬ x R A
35 34 eqeq1d n = x X | ¬ x R A x X | ¬ B R x n = x X | ¬ B R x ¬ x R A =
36 31 35 3anbi23d n = x X | ¬ x R A A x X | ¬ B R x B n x X | ¬ B R x n = A x X | ¬ B R x B x X | ¬ x R A x X | ¬ B R x ¬ x R A =
37 30 36 rspc2ev x X | ¬ B R x ordTop R x X | ¬ x R A ordTop R A x X | ¬ B R x B x X | ¬ x R A x X | ¬ B R x ¬ x R A = m ordTop R n ordTop R A m B n m n =
38 5 8 22 25 26 37 syl113anc R TosetRel A X B X A R B A B x X | ¬ B R x ¬ x R A = m ordTop R n ordTop R A m B n m n =
39 38 ex R TosetRel A X B X A R B A B x X | ¬ B R x ¬ x R A = m ordTop R n ordTop R A m B n m n =
40 rabn0 x X | ¬ B R x ¬ x R A x X ¬ B R x ¬ x R A
41 simpll1 R TosetRel A X B X A R B A B x X ¬ B R x ¬ x R A R TosetRel
42 simprl R TosetRel A X B X A R B A B x X ¬ B R x ¬ x R A x X
43 1 ordtopn2 R TosetRel x X y X | ¬ x R y ordTop R
44 41 42 43 syl2anc R TosetRel A X B X A R B A B x X ¬ B R x ¬ x R A y X | ¬ x R y ordTop R
45 1 ordtopn1 R TosetRel x X y X | ¬ y R x ordTop R
46 41 42 45 syl2anc R TosetRel A X B X A R B A B x X ¬ B R x ¬ x R A y X | ¬ y R x ordTop R
47 breq2 y = A x R y x R A
48 47 notbid y = A ¬ x R y ¬ x R A
49 simpll2 R TosetRel A X B X A R B A B x X ¬ B R x ¬ x R A A X
50 simprrr R TosetRel A X B X A R B A B x X ¬ B R x ¬ x R A ¬ x R A
51 48 49 50 elrabd R TosetRel A X B X A R B A B x X ¬ B R x ¬ x R A A y X | ¬ x R y
52 breq1 y = B y R x B R x
53 52 notbid y = B ¬ y R x ¬ B R x
54 simpll3 R TosetRel A X B X A R B A B x X ¬ B R x ¬ x R A B X
55 simprrl R TosetRel A X B X A R B A B x X ¬ B R x ¬ x R A ¬ B R x
56 53 54 55 elrabd R TosetRel A X B X A R B A B x X ¬ B R x ¬ x R A B y X | ¬ y R x
57 41 42 jca R TosetRel A X B X A R B A B x X ¬ B R x ¬ x R A R TosetRel x X
58 1 tsrlin R TosetRel x X y X x R y y R x
59 58 3expa R TosetRel x X y X x R y y R x
60 57 59 sylan R TosetRel A X B X A R B A B x X ¬ B R x ¬ x R A y X x R y y R x
61 oran x R y y R x ¬ ¬ x R y ¬ y R x
62 60 61 sylib R TosetRel A X B X A R B A B x X ¬ B R x ¬ x R A y X ¬ ¬ x R y ¬ y R x
63 62 ralrimiva R TosetRel A X B X A R B A B x X ¬ B R x ¬ x R A y X ¬ ¬ x R y ¬ y R x
64 rabeq0 y X | ¬ x R y ¬ y R x = y X ¬ ¬ x R y ¬ y R x
65 63 64 sylibr R TosetRel A X B X A R B A B x X ¬ B R x ¬ x R A y X | ¬ x R y ¬ y R x =
66 eleq2 m = y X | ¬ x R y A m A y X | ¬ x R y
67 ineq1 m = y X | ¬ x R y m n = y X | ¬ x R y n
68 67 eqeq1d m = y X | ¬ x R y m n = y X | ¬ x R y n =
69 66 68 3anbi13d m = y X | ¬ x R y A m B n m n = A y X | ¬ x R y B n y X | ¬ x R y n =
70 eleq2 n = y X | ¬ y R x B n B y X | ¬ y R x
71 ineq2 n = y X | ¬ y R x y X | ¬ x R y n = y X | ¬ x R y y X | ¬ y R x
72 inrab y X | ¬ x R y y X | ¬ y R x = y X | ¬ x R y ¬ y R x
73 71 72 eqtrdi n = y X | ¬ y R x y X | ¬ x R y n = y X | ¬ x R y ¬ y R x
74 73 eqeq1d n = y X | ¬ y R x y X | ¬ x R y n = y X | ¬ x R y ¬ y R x =
75 70 74 3anbi23d n = y X | ¬ y R x A y X | ¬ x R y B n y X | ¬ x R y n = A y X | ¬ x R y B y X | ¬ y R x y X | ¬ x R y ¬ y R x =
76 69 75 rspc2ev y X | ¬ x R y ordTop R y X | ¬ y R x ordTop R A y X | ¬ x R y B y X | ¬ y R x y X | ¬ x R y ¬ y R x = m ordTop R n ordTop R A m B n m n =
77 44 46 51 56 65 76 syl113anc R TosetRel A X B X A R B A B x X ¬ B R x ¬ x R A m ordTop R n ordTop R A m B n m n =
78 77 rexlimdvaa R TosetRel A X B X A R B A B x X ¬ B R x ¬ x R A m ordTop R n ordTop R A m B n m n =
79 40 78 syl5bi R TosetRel A X B X A R B A B x X | ¬ B R x ¬ x R A m ordTop R n ordTop R A m B n m n =
80 39 79 pm2.61dne R TosetRel A X B X A R B A B m ordTop R n ordTop R A m B n m n =
81 80 exp32 R TosetRel A X B X A R B A B m ordTop R n ordTop R A m B n m n =