Step |
Hyp |
Ref |
Expression |
1 |
|
ordthauslem.1 |
|
2 |
|
simpll1 |
|
3 |
|
simpll3 |
|
4 |
1
|
ordtopn2 |
|
5 |
2 3 4
|
syl2anc |
|
6 |
|
simpll2 |
|
7 |
1
|
ordtopn1 |
|
8 |
2 6 7
|
syl2anc |
|
9 |
|
breq2 |
|
10 |
9
|
notbid |
|
11 |
|
simprr |
|
12 |
|
simpl1 |
|
13 |
|
tsrps |
|
14 |
12 13
|
syl |
|
15 |
|
simprl |
|
16 |
|
psasym |
|
17 |
16
|
3expia |
|
18 |
14 15 17
|
syl2anc |
|
19 |
18
|
necon3ad |
|
20 |
11 19
|
mpd |
|
21 |
20
|
adantr |
|
22 |
10 6 21
|
elrabd |
|
23 |
|
breq1 |
|
24 |
23
|
notbid |
|
25 |
24 3 21
|
elrabd |
|
26 |
|
simpr |
|
27 |
|
eleq2 |
|
28 |
|
ineq1 |
|
29 |
28
|
eqeq1d |
|
30 |
27 29
|
3anbi13d |
|
31 |
|
eleq2 |
|
32 |
|
ineq2 |
|
33 |
|
inrab |
|
34 |
32 33
|
eqtrdi |
|
35 |
34
|
eqeq1d |
|
36 |
31 35
|
3anbi23d |
|
37 |
30 36
|
rspc2ev |
|
38 |
5 8 22 25 26 37
|
syl113anc |
|
39 |
38
|
ex |
|
40 |
|
rabn0 |
|
41 |
|
simpll1 |
|
42 |
|
simprl |
|
43 |
1
|
ordtopn2 |
|
44 |
41 42 43
|
syl2anc |
|
45 |
1
|
ordtopn1 |
|
46 |
41 42 45
|
syl2anc |
|
47 |
|
breq2 |
|
48 |
47
|
notbid |
|
49 |
|
simpll2 |
|
50 |
|
simprrr |
|
51 |
48 49 50
|
elrabd |
|
52 |
|
breq1 |
|
53 |
52
|
notbid |
|
54 |
|
simpll3 |
|
55 |
|
simprrl |
|
56 |
53 54 55
|
elrabd |
|
57 |
41 42
|
jca |
|
58 |
1
|
tsrlin |
|
59 |
58
|
3expa |
|
60 |
57 59
|
sylan |
|
61 |
|
oran |
|
62 |
60 61
|
sylib |
|
63 |
62
|
ralrimiva |
|
64 |
|
rabeq0 |
|
65 |
63 64
|
sylibr |
|
66 |
|
eleq2 |
|
67 |
|
ineq1 |
|
68 |
67
|
eqeq1d |
|
69 |
66 68
|
3anbi13d |
|
70 |
|
eleq2 |
|
71 |
|
ineq2 |
|
72 |
|
inrab |
|
73 |
71 72
|
eqtrdi |
|
74 |
73
|
eqeq1d |
|
75 |
70 74
|
3anbi23d |
|
76 |
69 75
|
rspc2ev |
|
77 |
44 46 51 56 65 76
|
syl113anc |
|
78 |
77
|
rexlimdvaa |
|
79 |
40 78
|
syl5bi |
|
80 |
39 79
|
pm2.61dne |
|
81 |
80
|
exp32 |
|