| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordthauslem.1 |
|
| 2 |
|
simpll1 |
|
| 3 |
|
simpll3 |
|
| 4 |
1
|
ordtopn2 |
|
| 5 |
2 3 4
|
syl2anc |
|
| 6 |
|
simpll2 |
|
| 7 |
1
|
ordtopn1 |
|
| 8 |
2 6 7
|
syl2anc |
|
| 9 |
|
breq2 |
|
| 10 |
9
|
notbid |
|
| 11 |
|
simprr |
|
| 12 |
|
simpl1 |
|
| 13 |
|
tsrps |
|
| 14 |
12 13
|
syl |
|
| 15 |
|
simprl |
|
| 16 |
|
psasym |
|
| 17 |
16
|
3expia |
|
| 18 |
14 15 17
|
syl2anc |
|
| 19 |
18
|
necon3ad |
|
| 20 |
11 19
|
mpd |
|
| 21 |
20
|
adantr |
|
| 22 |
10 6 21
|
elrabd |
|
| 23 |
|
breq1 |
|
| 24 |
23
|
notbid |
|
| 25 |
24 3 21
|
elrabd |
|
| 26 |
|
simpr |
|
| 27 |
|
eleq2 |
|
| 28 |
|
ineq1 |
|
| 29 |
28
|
eqeq1d |
|
| 30 |
27 29
|
3anbi13d |
|
| 31 |
|
eleq2 |
|
| 32 |
|
ineq2 |
|
| 33 |
|
inrab |
|
| 34 |
32 33
|
eqtrdi |
|
| 35 |
34
|
eqeq1d |
|
| 36 |
31 35
|
3anbi23d |
|
| 37 |
30 36
|
rspc2ev |
|
| 38 |
5 8 22 25 26 37
|
syl113anc |
|
| 39 |
38
|
ex |
|
| 40 |
|
rabn0 |
|
| 41 |
|
simpll1 |
|
| 42 |
|
simprl |
|
| 43 |
1
|
ordtopn2 |
|
| 44 |
41 42 43
|
syl2anc |
|
| 45 |
1
|
ordtopn1 |
|
| 46 |
41 42 45
|
syl2anc |
|
| 47 |
|
breq2 |
|
| 48 |
47
|
notbid |
|
| 49 |
|
simpll2 |
|
| 50 |
|
simprrr |
|
| 51 |
48 49 50
|
elrabd |
|
| 52 |
|
breq1 |
|
| 53 |
52
|
notbid |
|
| 54 |
|
simpll3 |
|
| 55 |
|
simprrl |
|
| 56 |
53 54 55
|
elrabd |
|
| 57 |
41 42
|
jca |
|
| 58 |
1
|
tsrlin |
|
| 59 |
58
|
3expa |
|
| 60 |
57 59
|
sylan |
|
| 61 |
|
oran |
|
| 62 |
60 61
|
sylib |
|
| 63 |
62
|
ralrimiva |
|
| 64 |
|
rabeq0 |
|
| 65 |
63 64
|
sylibr |
|
| 66 |
|
eleq2 |
|
| 67 |
|
ineq1 |
|
| 68 |
67
|
eqeq1d |
|
| 69 |
66 68
|
3anbi13d |
|
| 70 |
|
eleq2 |
|
| 71 |
|
ineq2 |
|
| 72 |
|
inrab |
|
| 73 |
71 72
|
eqtrdi |
|
| 74 |
73
|
eqeq1d |
|
| 75 |
70 74
|
3anbi23d |
|
| 76 |
69 75
|
rspc2ev |
|
| 77 |
44 46 51 56 65 76
|
syl113anc |
|
| 78 |
77
|
rexlimdvaa |
|
| 79 |
40 78
|
biimtrid |
|
| 80 |
39 79
|
pm2.61dne |
|
| 81 |
80
|
exp32 |
|