Metamath Proof Explorer


Theorem ordthmeo

Description: An order isomorphism is a homeomorphism on the respective order topologies. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypotheses ordthmeo.1 X = dom R
ordthmeo.2 Y = dom S
Assertion ordthmeo R V S W F Isom R , S X Y F ordTop R Homeo ordTop S

Proof

Step Hyp Ref Expression
1 ordthmeo.1 X = dom R
2 ordthmeo.2 Y = dom S
3 1 2 ordthmeolem R V S W F Isom R , S X Y F ordTop R Cn ordTop S
4 isocnv F Isom R , S X Y F -1 Isom S , R Y X
5 2 1 ordthmeolem S W R V F -1 Isom S , R Y X F -1 ordTop S Cn ordTop R
6 5 3com12 R V S W F -1 Isom S , R Y X F -1 ordTop S Cn ordTop R
7 4 6 syl3an3 R V S W F Isom R , S X Y F -1 ordTop S Cn ordTop R
8 ishmeo F ordTop R Homeo ordTop S F ordTop R Cn ordTop S F -1 ordTop S Cn ordTop R
9 3 7 8 sylanbrc R V S W F Isom R , S X Y F ordTop R Homeo ordTop S