Database
BASIC TOPOLOGY
Topology
Order topology
ordtopn3
Next ⟩
ordtcld1
Metamath Proof Explorer
Ascii
Unicode
Theorem
ordtopn3
Description:
An open interval
( A , B )
is open.
(Contributed by
Mario Carneiro
, 3-Sep-2015)
Ref
Expression
Hypothesis
ordttopon.3
⊢
X
=
dom
⁡
R
Assertion
ordtopn3
⊢
R
∈
V
∧
A
∈
X
∧
B
∈
X
→
x
∈
X
|
¬
x
R
A
∧
¬
B
R
x
∈
ordTop
⁡
R
Proof
Step
Hyp
Ref
Expression
1
ordttopon.3
⊢
X
=
dom
⁡
R
2
inrab
⊢
x
∈
X
|
¬
x
R
A
∩
x
∈
X
|
¬
B
R
x
=
x
∈
X
|
¬
x
R
A
∧
¬
B
R
x
3
1
ordttopon
⊢
R
∈
V
→
ordTop
⁡
R
∈
TopOn
⁡
X
4
3
3ad2ant1
⊢
R
∈
V
∧
A
∈
X
∧
B
∈
X
→
ordTop
⁡
R
∈
TopOn
⁡
X
5
topontop
⊢
ordTop
⁡
R
∈
TopOn
⁡
X
→
ordTop
⁡
R
∈
Top
6
4
5
syl
⊢
R
∈
V
∧
A
∈
X
∧
B
∈
X
→
ordTop
⁡
R
∈
Top
7
1
ordtopn1
⊢
R
∈
V
∧
A
∈
X
→
x
∈
X
|
¬
x
R
A
∈
ordTop
⁡
R
8
7
3adant3
⊢
R
∈
V
∧
A
∈
X
∧
B
∈
X
→
x
∈
X
|
¬
x
R
A
∈
ordTop
⁡
R
9
1
ordtopn2
⊢
R
∈
V
∧
B
∈
X
→
x
∈
X
|
¬
B
R
x
∈
ordTop
⁡
R
10
9
3adant2
⊢
R
∈
V
∧
A
∈
X
∧
B
∈
X
→
x
∈
X
|
¬
B
R
x
∈
ordTop
⁡
R
11
inopn
⊢
ordTop
⁡
R
∈
Top
∧
x
∈
X
|
¬
x
R
A
∈
ordTop
⁡
R
∧
x
∈
X
|
¬
B
R
x
∈
ordTop
⁡
R
→
x
∈
X
|
¬
x
R
A
∩
x
∈
X
|
¬
B
R
x
∈
ordTop
⁡
R
12
6
8
10
11
syl3anc
⊢
R
∈
V
∧
A
∈
X
∧
B
∈
X
→
x
∈
X
|
¬
x
R
A
∩
x
∈
X
|
¬
B
R
x
∈
ordTop
⁡
R
13
2
12
eqeltrrid
⊢
R
∈
V
∧
A
∈
X
∧
B
∈
X
→
x
∈
X
|
¬
x
R
A
∧
¬
B
R
x
∈
ordTop
⁡
R