Metamath Proof Explorer


Theorem ordtopn3

Description: An open interval ( A , B ) is open. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis ordttopon.3 X = dom R
Assertion ordtopn3 R V A X B X x X | ¬ x R A ¬ B R x ordTop R

Proof

Step Hyp Ref Expression
1 ordttopon.3 X = dom R
2 inrab x X | ¬ x R A x X | ¬ B R x = x X | ¬ x R A ¬ B R x
3 1 ordttopon R V ordTop R TopOn X
4 3 3ad2ant1 R V A X B X ordTop R TopOn X
5 topontop ordTop R TopOn X ordTop R Top
6 4 5 syl R V A X B X ordTop R Top
7 1 ordtopn1 R V A X x X | ¬ x R A ordTop R
8 7 3adant3 R V A X B X x X | ¬ x R A ordTop R
9 1 ordtopn2 R V B X x X | ¬ B R x ordTop R
10 9 3adant2 R V A X B X x X | ¬ B R x ordTop R
11 inopn ordTop R Top x X | ¬ x R A ordTop R x X | ¬ B R x ordTop R x X | ¬ x R A x X | ¬ B R x ordTop R
12 6 8 10 11 syl3anc R V A X B X x X | ¬ x R A x X | ¬ B R x ordTop R
13 2 12 eqeltrrid R V A X B X x X | ¬ x R A ¬ B R x ordTop R