Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
ordtr1
Next ⟩
ordtr2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ordtr1
Description:
Transitive law for ordinal classes.
(Contributed by
NM
, 12-Dec-2004)
Ref
Expression
Assertion
ordtr1
⊢
Ord
⁡
C
→
A
∈
B
∧
B
∈
C
→
A
∈
C
Proof
Step
Hyp
Ref
Expression
1
ordtr
⊢
Ord
⁡
C
→
Tr
⁡
C
2
trel
⊢
Tr
⁡
C
→
A
∈
B
∧
B
∈
C
→
A
∈
C
3
1
2
syl
⊢
Ord
⁡
C
→
A
∈
B
∧
B
∈
C
→
A
∈
C