Metamath Proof Explorer


Theorem ordtr2

Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ordtr2 Ord A Ord C A B B C A C

Proof

Step Hyp Ref Expression
1 ordelord Ord C B C Ord B
2 1 ex Ord C B C Ord B
3 2 ancld Ord C B C B C Ord B
4 3 anc2li Ord C B C Ord C B C Ord B
5 ordelpss Ord B Ord C B C B C
6 sspsstr A B B C A C
7 6 expcom B C A B A C
8 5 7 syl6bi Ord B Ord C B C A B A C
9 8 expcom Ord C Ord B B C A B A C
10 9 com23 Ord C B C Ord B A B A C
11 10 imp32 Ord C B C Ord B A B A C
12 11 com12 A B Ord C B C Ord B A C
13 4 12 syl9 Ord C A B B C A C
14 13 impd Ord C A B B C A C
15 14 adantl Ord A Ord C A B B C A C
16 ordelpss Ord A Ord C A C A C
17 15 16 sylibrd Ord A Ord C A B B C A C