| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inex1g |
|
| 2 |
1
|
adantr |
|
| 3 |
|
eqid |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
3 4 5
|
ordtval |
|
| 7 |
2 6
|
syl |
|
| 8 |
|
ordttop |
|
| 9 |
|
resttop |
|
| 10 |
8 9
|
sylan |
|
| 11 |
|
eqid |
|
| 12 |
11
|
psssdm2 |
|
| 13 |
12
|
adantr |
|
| 14 |
8
|
adantr |
|
| 15 |
|
simpr |
|
| 16 |
11
|
ordttopon |
|
| 17 |
16
|
adantr |
|
| 18 |
|
toponmax |
|
| 19 |
17 18
|
syl |
|
| 20 |
|
elrestr |
|
| 21 |
14 15 19 20
|
syl3anc |
|
| 22 |
13 21
|
eqeltrd |
|
| 23 |
22
|
snssd |
|
| 24 |
13
|
rabeqdv |
|
| 25 |
13 24
|
mpteq12dv |
|
| 26 |
25
|
rneqd |
|
| 27 |
|
inrab2 |
|
| 28 |
|
simpr |
|
| 29 |
28
|
elin2d |
|
| 30 |
|
simpr |
|
| 31 |
30
|
elin2d |
|
| 32 |
31
|
adantr |
|
| 33 |
|
brinxp |
|
| 34 |
29 32 33
|
syl2anc |
|
| 35 |
34
|
notbid |
|
| 36 |
35
|
rabbidva |
|
| 37 |
27 36
|
eqtrid |
|
| 38 |
14
|
adantr |
|
| 39 |
15
|
adantr |
|
| 40 |
|
simpl |
|
| 41 |
|
elinel1 |
|
| 42 |
11
|
ordtopn1 |
|
| 43 |
40 41 42
|
syl2an |
|
| 44 |
|
elrestr |
|
| 45 |
38 39 43 44
|
syl3anc |
|
| 46 |
37 45
|
eqeltrrd |
|
| 47 |
46
|
fmpttd |
|
| 48 |
47
|
frnd |
|
| 49 |
26 48
|
eqsstrd |
|
| 50 |
13
|
rabeqdv |
|
| 51 |
13 50
|
mpteq12dv |
|
| 52 |
51
|
rneqd |
|
| 53 |
|
inrab2 |
|
| 54 |
|
brinxp |
|
| 55 |
32 29 54
|
syl2anc |
|
| 56 |
55
|
notbid |
|
| 57 |
56
|
rabbidva |
|
| 58 |
53 57
|
eqtrid |
|
| 59 |
11
|
ordtopn2 |
|
| 60 |
40 41 59
|
syl2an |
|
| 61 |
|
elrestr |
|
| 62 |
38 39 60 61
|
syl3anc |
|
| 63 |
58 62
|
eqeltrrd |
|
| 64 |
63
|
fmpttd |
|
| 65 |
64
|
frnd |
|
| 66 |
52 65
|
eqsstrd |
|
| 67 |
49 66
|
unssd |
|
| 68 |
23 67
|
unssd |
|
| 69 |
|
tgfiss |
|
| 70 |
10 68 69
|
syl2anc |
|
| 71 |
7 70
|
eqsstrd |
|