Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
ordtri2
Next ⟩
ordtri3
Metamath Proof Explorer
Ascii
Unicode
Theorem
ordtri2
Description:
A trichotomy law for ordinals.
(Contributed by
NM
, 25-Nov-1995)
Ref
Expression
Assertion
ordtri2
⊢
Ord
⁡
A
∧
Ord
⁡
B
→
A
∈
B
↔
¬
A
=
B
∨
B
∈
A
Proof
Step
Hyp
Ref
Expression
1
ordsseleq
⊢
Ord
⁡
B
∧
Ord
⁡
A
→
B
⊆
A
↔
B
∈
A
∨
B
=
A
2
eqcom
⊢
B
=
A
↔
A
=
B
3
2
orbi2i
⊢
B
∈
A
∨
B
=
A
↔
B
∈
A
∨
A
=
B
4
orcom
⊢
B
∈
A
∨
A
=
B
↔
A
=
B
∨
B
∈
A
5
3
4
bitri
⊢
B
∈
A
∨
B
=
A
↔
A
=
B
∨
B
∈
A
6
1
5
bitrdi
⊢
Ord
⁡
B
∧
Ord
⁡
A
→
B
⊆
A
↔
A
=
B
∨
B
∈
A
7
ordtri1
⊢
Ord
⁡
B
∧
Ord
⁡
A
→
B
⊆
A
↔
¬
A
∈
B
8
6
7
bitr3d
⊢
Ord
⁡
B
∧
Ord
⁡
A
→
A
=
B
∨
B
∈
A
↔
¬
A
∈
B
9
8
ancoms
⊢
Ord
⁡
A
∧
Ord
⁡
B
→
A
=
B
∨
B
∈
A
↔
¬
A
∈
B
10
9
con2bid
⊢
Ord
⁡
A
∧
Ord
⁡
B
→
A
∈
B
↔
¬
A
=
B
∨
B
∈
A