Metamath Proof Explorer


Theorem ordtri3or

Description: A trichotomy law for ordinals. Proposition 7.10 of TakeutiZaring p. 38. (Contributed by NM, 10-May-1994) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ordtri3or Ord A Ord B A B A = B B A

Proof

Step Hyp Ref Expression
1 ordin Ord A Ord B Ord A B
2 ordirr Ord A B ¬ A B A B
3 1 2 syl Ord A Ord B ¬ A B A B
4 ianor ¬ A B A B A B ¬ A B A ¬ B A B
5 elin A B A B A B A A B B
6 incom A B = B A
7 6 eleq1i A B B B A B
8 7 anbi2i A B A A B B A B A B A B
9 5 8 bitri A B A B A B A B A B
10 4 9 xchnxbir ¬ A B A B ¬ A B A ¬ B A B
11 3 10 sylib Ord A Ord B ¬ A B A ¬ B A B
12 inss1 A B A
13 ordsseleq Ord A B Ord A A B A A B A A B = A
14 12 13 mpbii Ord A B Ord A A B A A B = A
15 1 14 sylan Ord A Ord B Ord A A B A A B = A
16 15 anabss1 Ord A Ord B A B A A B = A
17 16 ord Ord A Ord B ¬ A B A A B = A
18 df-ss A B A B = A
19 17 18 syl6ibr Ord A Ord B ¬ A B A A B
20 ordin Ord B Ord A Ord B A
21 inss1 B A B
22 ordsseleq Ord B A Ord B B A B B A B B A = B
23 21 22 mpbii Ord B A Ord B B A B B A = B
24 20 23 sylan Ord B Ord A Ord B B A B B A = B
25 24 anabss4 Ord A Ord B B A B B A = B
26 25 ord Ord A Ord B ¬ B A B B A = B
27 df-ss B A B A = B
28 26 27 syl6ibr Ord A Ord B ¬ B A B B A
29 19 28 orim12d Ord A Ord B ¬ A B A ¬ B A B A B B A
30 11 29 mpd Ord A Ord B A B B A
31 sspsstri A B B A A B A = B B A
32 30 31 sylib Ord A Ord B A B A = B B A
33 ordelpss Ord A Ord B A B A B
34 biidd Ord A Ord B A = B A = B
35 ordelpss Ord B Ord A B A B A
36 35 ancoms Ord A Ord B B A B A
37 33 34 36 3orbi123d Ord A Ord B A B A = B B A A B A = B B A
38 32 37 mpbird Ord A Ord B A B A = B B A