Metamath Proof Explorer


Theorem ordtri4

Description: A trichotomy law for ordinals. (Contributed by NM, 1-Nov-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ordtri4 Ord A Ord B A = B A B ¬ A B

Proof

Step Hyp Ref Expression
1 eqss A = B A B B A
2 ordtri1 Ord B Ord A B A ¬ A B
3 2 ancoms Ord A Ord B B A ¬ A B
4 3 anbi2d Ord A Ord B A B B A A B ¬ A B
5 1 4 syl5bb Ord A Ord B A = B A B ¬ A B