Metamath Proof Explorer


Theorem ordttop

Description: The order topology is a topology. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion ordttop R V ordTop R Top

Proof

Step Hyp Ref Expression
1 eqid dom R = dom R
2 1 ordttopon R V ordTop R TopOn dom R
3 topontop ordTop R TopOn dom R ordTop R Top
4 2 3 syl R V ordTop R Top