Metamath Proof Explorer


Theorem ordttopon

Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis ordttopon.3 X = dom R
Assertion ordttopon R V ordTop R TopOn X

Proof

Step Hyp Ref Expression
1 ordttopon.3 X = dom R
2 eqid ran x X y X | ¬ y R x = ran x X y X | ¬ y R x
3 eqid ran x X y X | ¬ x R y = ran x X y X | ¬ x R y
4 1 2 3 ordtval R V ordTop R = topGen fi X ran x X y X | ¬ y R x ran x X y X | ¬ x R y
5 fibas fi X ran x X y X | ¬ y R x ran x X y X | ¬ x R y TopBases
6 tgtopon fi X ran x X y X | ¬ y R x ran x X y X | ¬ x R y TopBases topGen fi X ran x X y X | ¬ y R x ran x X y X | ¬ x R y TopOn fi X ran x X y X | ¬ y R x ran x X y X | ¬ x R y
7 5 6 ax-mp topGen fi X ran x X y X | ¬ y R x ran x X y X | ¬ x R y TopOn fi X ran x X y X | ¬ y R x ran x X y X | ¬ x R y
8 4 7 eqeltrdi R V ordTop R TopOn fi X ran x X y X | ¬ y R x ran x X y X | ¬ x R y
9 1 2 3 ordtuni R V X = X ran x X y X | ¬ y R x ran x X y X | ¬ x R y
10 dmexg R V dom R V
11 1 10 eqeltrid R V X V
12 9 11 eqeltrrd R V X ran x X y X | ¬ y R x ran x X y X | ¬ x R y V
13 uniexb X ran x X y X | ¬ y R x ran x X y X | ¬ x R y V X ran x X y X | ¬ y R x ran x X y X | ¬ x R y V
14 12 13 sylibr R V X ran x X y X | ¬ y R x ran x X y X | ¬ x R y V
15 fiuni X ran x X y X | ¬ y R x ran x X y X | ¬ x R y V X ran x X y X | ¬ y R x ran x X y X | ¬ x R y = fi X ran x X y X | ¬ y R x ran x X y X | ¬ x R y
16 14 15 syl R V X ran x X y X | ¬ y R x ran x X y X | ¬ x R y = fi X ran x X y X | ¬ y R x ran x X y X | ¬ x R y
17 9 16 eqtrd R V X = fi X ran x X y X | ¬ y R x ran x X y X | ¬ x R y
18 17 fveq2d R V TopOn X = TopOn fi X ran x X y X | ¬ y R x ran x X y X | ¬ x R y
19 8 18 eleqtrrd R V ordTop R TopOn X