Metamath Proof Explorer


Theorem ordtypelem1

Description: Lemma for ordtype . (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Hypotheses ordtypelem.1 F = recs G
ordtypelem.2 C = w A | j ran h j R w
ordtypelem.3 G = h V ι v C | u C ¬ u R v
ordtypelem.5 T = x On | t A z F x z R t
ordtypelem.6 O = OrdIso R A
ordtypelem.7 φ R We A
ordtypelem.8 φ R Se A
Assertion ordtypelem1 φ O = F T

Proof

Step Hyp Ref Expression
1 ordtypelem.1 F = recs G
2 ordtypelem.2 C = w A | j ran h j R w
3 ordtypelem.3 G = h V ι v C | u C ¬ u R v
4 ordtypelem.5 T = x On | t A z F x z R t
5 ordtypelem.6 O = OrdIso R A
6 ordtypelem.7 φ R We A
7 ordtypelem.8 φ R Se A
8 iftrue R We A R Se A if R We A R Se A F x On | t A z F x z R t = F x On | t A z F x z R t
9 6 7 8 syl2anc φ if R We A R Se A F x On | t A z F x z R t = F x On | t A z F x z R t
10 2 3 1 dfoi OrdIso R A = if R We A R Se A F x On | t A z F x z R t
11 5 10 eqtri O = if R We A R Se A F x On | t A z F x z R t
12 4 reseq2i F T = F x On | t A z F x z R t
13 9 11 12 3eqtr4g φ O = F T