Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinal isomorphism, Hartogs's theorem
ordtypelem1
Next ⟩
ordtypelem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ordtypelem1
Description:
Lemma for
ordtype
.
(Contributed by
Mario Carneiro
, 24-Jun-2015)
Ref
Expression
Hypotheses
ordtypelem.1
⊢
F
=
recs
⁡
G
ordtypelem.2
⊢
C
=
w
∈
A
|
∀
j
∈
ran
⁡
h
j
R
w
ordtypelem.3
⊢
G
=
h
∈
V
⟼
ι
v
∈
C
|
∀
u
∈
C
¬
u
R
v
ordtypelem.5
⊢
T
=
x
∈
On
|
∃
t
∈
A
∀
z
∈
F
x
z
R
t
ordtypelem.6
⊢
O
=
OrdIso
R
A
ordtypelem.7
⊢
φ
→
R
We
A
ordtypelem.8
⊢
φ
→
R
Se
A
Assertion
ordtypelem1
⊢
φ
→
O
=
F
↾
T
Proof
Step
Hyp
Ref
Expression
1
ordtypelem.1
⊢
F
=
recs
⁡
G
2
ordtypelem.2
⊢
C
=
w
∈
A
|
∀
j
∈
ran
⁡
h
j
R
w
3
ordtypelem.3
⊢
G
=
h
∈
V
⟼
ι
v
∈
C
|
∀
u
∈
C
¬
u
R
v
4
ordtypelem.5
⊢
T
=
x
∈
On
|
∃
t
∈
A
∀
z
∈
F
x
z
R
t
5
ordtypelem.6
⊢
O
=
OrdIso
R
A
6
ordtypelem.7
⊢
φ
→
R
We
A
7
ordtypelem.8
⊢
φ
→
R
Se
A
8
iftrue
⊢
R
We
A
∧
R
Se
A
→
if
R
We
A
∧
R
Se
A
F
↾
x
∈
On
|
∃
t
∈
A
∀
z
∈
F
x
z
R
t
∅
=
F
↾
x
∈
On
|
∃
t
∈
A
∀
z
∈
F
x
z
R
t
9
6
7
8
syl2anc
⊢
φ
→
if
R
We
A
∧
R
Se
A
F
↾
x
∈
On
|
∃
t
∈
A
∀
z
∈
F
x
z
R
t
∅
=
F
↾
x
∈
On
|
∃
t
∈
A
∀
z
∈
F
x
z
R
t
10
2
3
1
dfoi
⊢
OrdIso
R
A
=
if
R
We
A
∧
R
Se
A
F
↾
x
∈
On
|
∃
t
∈
A
∀
z
∈
F
x
z
R
t
∅
11
5
10
eqtri
⊢
O
=
if
R
We
A
∧
R
Se
A
F
↾
x
∈
On
|
∃
t
∈
A
∀
z
∈
F
x
z
R
t
∅
12
4
reseq2i
⊢
F
↾
T
=
F
↾
x
∈
On
|
∃
t
∈
A
∀
z
∈
F
x
z
R
t
13
9
11
12
3eqtr4g
⊢
φ
→
O
=
F
↾
T