Metamath Proof Explorer


Theorem ordtypelem2

Description: Lemma for ordtype . (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Hypotheses ordtypelem.1 F = recs G
ordtypelem.2 C = w A | j ran h j R w
ordtypelem.3 G = h V ι v C | u C ¬ u R v
ordtypelem.5 T = x On | t A z F x z R t
ordtypelem.6 O = OrdIso R A
ordtypelem.7 φ R We A
ordtypelem.8 φ R Se A
Assertion ordtypelem2 φ Ord T

Proof

Step Hyp Ref Expression
1 ordtypelem.1 F = recs G
2 ordtypelem.2 C = w A | j ran h j R w
3 ordtypelem.3 G = h V ι v C | u C ¬ u R v
4 ordtypelem.5 T = x On | t A z F x z R t
5 ordtypelem.6 O = OrdIso R A
6 ordtypelem.7 φ R We A
7 ordtypelem.8 φ R Se A
8 4 ssrab3 T On
9 8 a1i φ T On
10 9 sselda φ a T a On
11 onss a On a On
12 10 11 syl φ a T a On
13 eloni a On Ord a
14 10 13 syl φ a T Ord a
15 imaeq2 x = a F x = F a
16 15 raleqdv x = a z F x z R t z F a z R t
17 16 rexbidv x = a t A z F x z R t t A z F a z R t
18 17 4 elrab2 a T a On t A z F a z R t
19 18 simprbi a T t A z F a z R t
20 19 adantl φ a T t A z F a z R t
21 ordelss Ord a x a x a
22 imass2 x a F x F a
23 ssralv F x F a z F a z R t z F x z R t
24 23 reximdv F x F a t A z F a z R t t A z F x z R t
25 21 22 24 3syl Ord a x a t A z F a z R t t A z F x z R t
26 25 ralrimdva Ord a t A z F a z R t x a t A z F x z R t
27 14 20 26 sylc φ a T x a t A z F x z R t
28 ssrab a x On | t A z F x z R t a On x a t A z F x z R t
29 12 27 28 sylanbrc φ a T a x On | t A z F x z R t
30 29 4 sseqtrrdi φ a T a T
31 30 ralrimiva φ a T a T
32 dftr3 Tr T a T a T
33 31 32 sylibr φ Tr T
34 ordon Ord On
35 trssord Tr T T On Ord On Ord T
36 8 34 35 mp3an23 Tr T Ord T
37 33 36 syl φ Ord T