Metamath Proof Explorer


Theorem ordtypelem3

Description: Lemma for ordtype . (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Hypotheses ordtypelem.1 F = recs G
ordtypelem.2 C = w A | j ran h j R w
ordtypelem.3 G = h V ι v C | u C ¬ u R v
ordtypelem.5 T = x On | t A z F x z R t
ordtypelem.6 O = OrdIso R A
ordtypelem.7 φ R We A
ordtypelem.8 φ R Se A
Assertion ordtypelem3 φ M T dom F F M v w A | j F M j R w | u w A | j F M j R w ¬ u R v

Proof

Step Hyp Ref Expression
1 ordtypelem.1 F = recs G
2 ordtypelem.2 C = w A | j ran h j R w
3 ordtypelem.3 G = h V ι v C | u C ¬ u R v
4 ordtypelem.5 T = x On | t A z F x z R t
5 ordtypelem.6 O = OrdIso R A
6 ordtypelem.7 φ R We A
7 ordtypelem.8 φ R Se A
8 simpr φ M T dom F M T dom F
9 8 elin2d φ M T dom F M dom F
10 1 tfr2a M dom F F M = G F M
11 9 10 syl φ M T dom F F M = G F M
12 1 tfr1a Fun F Lim dom F
13 12 simpri Lim dom F
14 limord Lim dom F Ord dom F
15 13 14 ax-mp Ord dom F
16 ordelord Ord dom F M dom F Ord M
17 15 9 16 sylancr φ M T dom F Ord M
18 1 tfr2b Ord M M dom F F M V
19 17 18 syl φ M T dom F M dom F F M V
20 9 19 mpbid φ M T dom F F M V
21 rneq h = F M ran h = ran F M
22 df-ima F M = ran F M
23 21 22 eqtr4di h = F M ran h = F M
24 23 raleqdv h = F M j ran h j R w j F M j R w
25 24 rabbidv h = F M w A | j ran h j R w = w A | j F M j R w
26 2 25 eqtrid h = F M C = w A | j F M j R w
27 26 raleqdv h = F M u C ¬ u R v u w A | j F M j R w ¬ u R v
28 26 27 riotaeqbidv h = F M ι v C | u C ¬ u R v = ι v w A | j F M j R w | u w A | j F M j R w ¬ u R v
29 riotaex ι v w A | j F M j R w | u w A | j F M j R w ¬ u R v V
30 28 3 29 fvmpt F M V G F M = ι v w A | j F M j R w | u w A | j F M j R w ¬ u R v
31 20 30 syl φ M T dom F G F M = ι v w A | j F M j R w | u w A | j F M j R w ¬ u R v
32 11 31 eqtrd φ M T dom F F M = ι v w A | j F M j R w | u w A | j F M j R w ¬ u R v
33 6 adantr φ M T dom F R We A
34 7 adantr φ M T dom F R Se A
35 ssrab2 w A | j F M j R w A
36 35 a1i φ M T dom F w A | j F M j R w A
37 8 elin1d φ M T dom F M T
38 imaeq2 x = M F x = F M
39 38 raleqdv x = M z F x z R t z F M z R t
40 39 rexbidv x = M t A z F x z R t t A z F M z R t
41 40 4 elrab2 M T M On t A z F M z R t
42 41 simprbi M T t A z F M z R t
43 37 42 syl φ M T dom F t A z F M z R t
44 breq1 j = z j R w z R w
45 44 cbvralvw j F M j R w z F M z R w
46 breq2 w = t z R w z R t
47 46 ralbidv w = t z F M z R w z F M z R t
48 45 47 bitrid w = t j F M j R w z F M z R t
49 48 cbvrexvw w A j F M j R w t A z F M z R t
50 43 49 sylibr φ M T dom F w A j F M j R w
51 rabn0 w A | j F M j R w w A j F M j R w
52 50 51 sylibr φ M T dom F w A | j F M j R w
53 wereu2 R We A R Se A w A | j F M j R w A w A | j F M j R w ∃! v w A | j F M j R w u w A | j F M j R w ¬ u R v
54 33 34 36 52 53 syl22anc φ M T dom F ∃! v w A | j F M j R w u w A | j F M j R w ¬ u R v
55 riotacl2 ∃! v w A | j F M j R w u w A | j F M j R w ¬ u R v ι v w A | j F M j R w | u w A | j F M j R w ¬ u R v v w A | j F M j R w | u w A | j F M j R w ¬ u R v
56 54 55 syl φ M T dom F ι v w A | j F M j R w | u w A | j F M j R w ¬ u R v v w A | j F M j R w | u w A | j F M j R w ¬ u R v
57 32 56 eqeltrd φ M T dom F F M v w A | j F M j R w | u w A | j F M j R w ¬ u R v