Metamath Proof Explorer


Theorem ordtypelem4

Description: Lemma for ordtype . (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Hypotheses ordtypelem.1 F = recs G
ordtypelem.2 C = w A | j ran h j R w
ordtypelem.3 G = h V ι v C | u C ¬ u R v
ordtypelem.5 T = x On | t A z F x z R t
ordtypelem.6 O = OrdIso R A
ordtypelem.7 φ R We A
ordtypelem.8 φ R Se A
Assertion ordtypelem4 φ O : T dom F A

Proof

Step Hyp Ref Expression
1 ordtypelem.1 F = recs G
2 ordtypelem.2 C = w A | j ran h j R w
3 ordtypelem.3 G = h V ι v C | u C ¬ u R v
4 ordtypelem.5 T = x On | t A z F x z R t
5 ordtypelem.6 O = OrdIso R A
6 ordtypelem.7 φ R We A
7 ordtypelem.8 φ R Se A
8 1 tfr1a Fun F Lim dom F
9 8 simpli Fun F
10 funres Fun F Fun F T
11 9 10 mp1i φ Fun F T
12 11 funfnd φ F T Fn dom F T
13 dmres dom F T = T dom F
14 13 fneq2i F T Fn dom F T F T Fn T dom F
15 12 14 sylib φ F T Fn T dom F
16 simpr φ a T dom F a T dom F
17 16 elin1d φ a T dom F a T
18 17 fvresd φ a T dom F F T a = F a
19 ssrab2 v w A | j F a j R w | u w A | j F a j R w ¬ u R v w A | j F a j R w
20 ssrab2 w A | j F a j R w A
21 19 20 sstri v w A | j F a j R w | u w A | j F a j R w ¬ u R v A
22 1 2 3 4 5 6 7 ordtypelem3 φ a T dom F F a v w A | j F a j R w | u w A | j F a j R w ¬ u R v
23 21 22 sselid φ a T dom F F a A
24 18 23 eqeltrd φ a T dom F F T a A
25 24 ralrimiva φ a T dom F F T a A
26 ffnfv F T : T dom F A F T Fn T dom F a T dom F F T a A
27 15 25 26 sylanbrc φ F T : T dom F A
28 1 2 3 4 5 6 7 ordtypelem1 φ O = F T
29 28 feq1d φ O : T dom F A F T : T dom F A
30 27 29 mpbird φ O : T dom F A