Metamath Proof Explorer


Theorem ordtypelem5

Description: Lemma for ordtype . (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Hypotheses ordtypelem.1 F = recs G
ordtypelem.2 C = w A | j ran h j R w
ordtypelem.3 G = h V ι v C | u C ¬ u R v
ordtypelem.5 T = x On | t A z F x z R t
ordtypelem.6 O = OrdIso R A
ordtypelem.7 φ R We A
ordtypelem.8 φ R Se A
Assertion ordtypelem5 φ Ord dom O O : dom O A

Proof

Step Hyp Ref Expression
1 ordtypelem.1 F = recs G
2 ordtypelem.2 C = w A | j ran h j R w
3 ordtypelem.3 G = h V ι v C | u C ¬ u R v
4 ordtypelem.5 T = x On | t A z F x z R t
5 ordtypelem.6 O = OrdIso R A
6 ordtypelem.7 φ R We A
7 ordtypelem.8 φ R Se A
8 1 2 3 4 5 6 7 ordtypelem2 φ Ord T
9 1 tfr1a Fun F Lim dom F
10 9 simpri Lim dom F
11 limord Lim dom F Ord dom F
12 10 11 ax-mp Ord dom F
13 ordin Ord T Ord dom F Ord T dom F
14 8 12 13 sylancl φ Ord T dom F
15 1 2 3 4 5 6 7 ordtypelem4 φ O : T dom F A
16 15 fdmd φ dom O = T dom F
17 ordeq dom O = T dom F Ord dom O Ord T dom F
18 16 17 syl φ Ord dom O Ord T dom F
19 14 18 mpbird φ Ord dom O
20 15 ffdmd φ O : dom O A
21 19 20 jca φ Ord dom O O : dom O A