Metamath Proof Explorer


Theorem ordtypelem7

Description: Lemma for ordtype . ran O is an initial segment of A under the well-order R . (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Hypotheses ordtypelem.1 F = recs G
ordtypelem.2 C = w A | j ran h j R w
ordtypelem.3 G = h V ι v C | u C ¬ u R v
ordtypelem.5 T = x On | t A z F x z R t
ordtypelem.6 O = OrdIso R A
ordtypelem.7 φ R We A
ordtypelem.8 φ R Se A
Assertion ordtypelem7 φ N A M dom O O M R N N ran O

Proof

Step Hyp Ref Expression
1 ordtypelem.1 F = recs G
2 ordtypelem.2 C = w A | j ran h j R w
3 ordtypelem.3 G = h V ι v C | u C ¬ u R v
4 ordtypelem.5 T = x On | t A z F x z R t
5 ordtypelem.6 O = OrdIso R A
6 ordtypelem.7 φ R We A
7 ordtypelem.8 φ R Se A
8 eldif N A ran O N A ¬ N ran O
9 1 2 3 4 5 6 7 ordtypelem4 φ O : T dom F A
10 9 adantr φ N A ran O O : T dom F A
11 10 fdmd φ N A ran O dom O = T dom F
12 inss1 T dom F T
13 1 2 3 4 5 6 7 ordtypelem2 φ Ord T
14 13 adantr φ N A ran O Ord T
15 ordsson Ord T T On
16 14 15 syl φ N A ran O T On
17 12 16 sstrid φ N A ran O T dom F On
18 11 17 eqsstrd φ N A ran O dom O On
19 18 sseld φ N A ran O M dom O M On
20 eleq1 a = b a dom O b dom O
21 fveq2 a = b O a = O b
22 21 breq1d a = b O a R N O b R N
23 20 22 imbi12d a = b a dom O O a R N b dom O O b R N
24 23 imbi2d a = b φ N A ran O a dom O O a R N φ N A ran O b dom O O b R N
25 eleq1 a = M a dom O M dom O
26 fveq2 a = M O a = O M
27 26 breq1d a = M O a R N O M R N
28 25 27 imbi12d a = M a dom O O a R N M dom O O M R N
29 28 imbi2d a = M φ N A ran O a dom O O a R N φ N A ran O M dom O O M R N
30 r19.21v b a φ N A ran O b dom O O b R N φ N A ran O b a b dom O O b R N
31 1 tfr1a Fun F Lim dom F
32 31 simpri Lim dom F
33 limord Lim dom F Ord dom F
34 32 33 ax-mp Ord dom F
35 ordin Ord T Ord dom F Ord T dom F
36 14 34 35 sylancl φ N A ran O Ord T dom F
37 ordeq dom O = T dom F Ord dom O Ord T dom F
38 11 37 syl φ N A ran O Ord dom O Ord T dom F
39 36 38 mpbird φ N A ran O Ord dom O
40 ordelss Ord dom O a dom O a dom O
41 39 40 sylan φ N A ran O a dom O a dom O
42 41 sselda φ N A ran O a dom O b a b dom O
43 pm5.5 b dom O b dom O O b R N O b R N
44 42 43 syl φ N A ran O a dom O b a b dom O O b R N O b R N
45 44 ralbidva φ N A ran O a dom O b a b dom O O b R N b a O b R N
46 eldifn N A ran O ¬ N ran O
47 46 ad2antlr φ N A ran O a dom O b a O b R N ¬ N ran O
48 9 ad2antrr φ N A ran O a dom O b a O b R N O : T dom F A
49 48 ffnd φ N A ran O a dom O b a O b R N O Fn T dom F
50 simprl φ N A ran O a dom O b a O b R N a dom O
51 48 fdmd φ N A ran O a dom O b a O b R N dom O = T dom F
52 50 51 eleqtrd φ N A ran O a dom O b a O b R N a T dom F
53 fnfvelrn O Fn T dom F a T dom F O a ran O
54 49 52 53 syl2anc φ N A ran O a dom O b a O b R N O a ran O
55 eleq1 O a = N O a ran O N ran O
56 54 55 syl5ibcom φ N A ran O a dom O b a O b R N O a = N N ran O
57 47 56 mtod φ N A ran O a dom O b a O b R N ¬ O a = N
58 breq1 u = N u R O a N R O a
59 58 notbid u = N ¬ u R O a ¬ N R O a
60 1 2 3 4 5 6 7 ordtypelem1 φ O = F T
61 60 ad2antrr φ N A ran O a dom O b a O b R N O = F T
62 61 fveq1d φ N A ran O a dom O b a O b R N O a = F T a
63 52 elin1d φ N A ran O a dom O b a O b R N a T
64 63 fvresd φ N A ran O a dom O b a O b R N F T a = F a
65 62 64 eqtrd φ N A ran O a dom O b a O b R N O a = F a
66 simpll φ N A ran O a dom O b a O b R N φ
67 1 2 3 4 5 6 7 ordtypelem3 φ a T dom F F a v w A | j F a j R w | u w A | j F a j R w ¬ u R v
68 66 52 67 syl2anc φ N A ran O a dom O b a O b R N F a v w A | j F a j R w | u w A | j F a j R w ¬ u R v
69 65 68 eqeltrd φ N A ran O a dom O b a O b R N O a v w A | j F a j R w | u w A | j F a j R w ¬ u R v
70 breq2 v = O a u R v u R O a
71 70 notbid v = O a ¬ u R v ¬ u R O a
72 71 ralbidv v = O a u w A | j F a j R w ¬ u R v u w A | j F a j R w ¬ u R O a
73 72 elrab O a v w A | j F a j R w | u w A | j F a j R w ¬ u R v O a w A | j F a j R w u w A | j F a j R w ¬ u R O a
74 73 simprbi O a v w A | j F a j R w | u w A | j F a j R w ¬ u R v u w A | j F a j R w ¬ u R O a
75 69 74 syl φ N A ran O a dom O b a O b R N u w A | j F a j R w ¬ u R O a
76 breq2 w = N j R w j R N
77 76 ralbidv w = N j F a j R w j F a j R N
78 eldifi N A ran O N A
79 78 ad2antlr φ N A ran O a dom O b a O b R N N A
80 simprr φ N A ran O a dom O b a O b R N b a O b R N
81 41 adantrr φ N A ran O a dom O b a O b R N a dom O
82 48 81 fssdmd φ N A ran O a dom O b a O b R N a T dom F
83 82 12 sstrdi φ N A ran O a dom O b a O b R N a T
84 fveq1 O = F T O b = F T b
85 ssel2 a T b a b T
86 85 fvresd a T b a F T b = F b
87 84 86 sylan9eq O = F T a T b a O b = F b
88 87 anassrs O = F T a T b a O b = F b
89 88 breq1d O = F T a T b a O b R N F b R N
90 89 ralbidva O = F T a T b a O b R N b a F b R N
91 61 83 90 syl2anc φ N A ran O a dom O b a O b R N b a O b R N b a F b R N
92 80 91 mpbid φ N A ran O a dom O b a O b R N b a F b R N
93 31 simpli Fun F
94 funfn Fun F F Fn dom F
95 93 94 mpbi F Fn dom F
96 inss2 T dom F dom F
97 82 96 sstrdi φ N A ran O a dom O b a O b R N a dom F
98 breq1 j = F b j R N F b R N
99 98 ralima F Fn dom F a dom F j F a j R N b a F b R N
100 95 97 99 sylancr φ N A ran O a dom O b a O b R N j F a j R N b a F b R N
101 92 100 mpbird φ N A ran O a dom O b a O b R N j F a j R N
102 77 79 101 elrabd φ N A ran O a dom O b a O b R N N w A | j F a j R w
103 59 75 102 rspcdva φ N A ran O a dom O b a O b R N ¬ N R O a
104 weso R We A R Or A
105 6 104 syl φ R Or A
106 105 ad2antrr φ N A ran O a dom O b a O b R N R Or A
107 48 52 ffvelrnd φ N A ran O a dom O b a O b R N O a A
108 sotric R Or A O a A N A O a R N ¬ O a = N N R O a
109 106 107 79 108 syl12anc φ N A ran O a dom O b a O b R N O a R N ¬ O a = N N R O a
110 ioran ¬ O a = N N R O a ¬ O a = N ¬ N R O a
111 109 110 bitrdi φ N A ran O a dom O b a O b R N O a R N ¬ O a = N ¬ N R O a
112 57 103 111 mpbir2and φ N A ran O a dom O b a O b R N O a R N
113 112 expr φ N A ran O a dom O b a O b R N O a R N
114 45 113 sylbid φ N A ran O a dom O b a b dom O O b R N O a R N
115 114 ex φ N A ran O a dom O b a b dom O O b R N O a R N
116 115 com23 φ N A ran O b a b dom O O b R N a dom O O a R N
117 116 a2i φ N A ran O b a b dom O O b R N φ N A ran O a dom O O a R N
118 117 a1i a On φ N A ran O b a b dom O O b R N φ N A ran O a dom O O a R N
119 30 118 syl5bi a On b a φ N A ran O b dom O O b R N φ N A ran O a dom O O a R N
120 24 29 119 tfis3 M On φ N A ran O M dom O O M R N
121 120 com3l φ N A ran O M dom O M On O M R N
122 19 121 mpdd φ N A ran O M dom O O M R N
123 8 122 sylan2br φ N A ¬ N ran O M dom O O M R N
124 123 anassrs φ N A ¬ N ran O M dom O O M R N
125 124 impancom φ N A M dom O ¬ N ran O O M R N
126 125 orrd φ N A M dom O N ran O O M R N
127 126 orcomd φ N A M dom O O M R N N ran O