Metamath Proof Explorer


Theorem ordun

Description: The maximum (i.e. union) of two ordinals is ordinal. Exercise 12 of TakeutiZaring p. 40. (Contributed by NM, 28-Nov-2003)

Ref Expression
Assertion ordun Ord A Ord B Ord A B

Proof

Step Hyp Ref Expression
1 eqid A B = A B
2 ordequn Ord A Ord B A B = A B A B = A A B = B
3 1 2 mpi Ord A Ord B A B = A A B = B
4 ordeq A B = A Ord A B Ord A
5 4 biimprcd Ord A A B = A Ord A B
6 ordeq A B = B Ord A B Ord B
7 6 biimprcd Ord B A B = B Ord A B
8 5 7 jaao Ord A Ord B A B = A A B = B Ord A B
9 3 8 mpd Ord A Ord B Ord A B