Metamath Proof Explorer


Theorem orduninsuc

Description: An ordinal equal to its union is not a successor. (Contributed by NM, 18-Feb-2004)

Ref Expression
Assertion orduninsuc Ord A A = A ¬ x On A = suc x

Proof

Step Hyp Ref Expression
1 ordeleqon Ord A A On A = On
2 id A = if A On A A = if A On A
3 unieq A = if A On A A = if A On A
4 2 3 eqeq12d A = if A On A A = A if A On A = if A On A
5 eqeq1 A = if A On A A = suc x if A On A = suc x
6 5 rexbidv A = if A On A x On A = suc x x On if A On A = suc x
7 6 notbid A = if A On A ¬ x On A = suc x ¬ x On if A On A = suc x
8 4 7 bibi12d A = if A On A A = A ¬ x On A = suc x if A On A = if A On A ¬ x On if A On A = suc x
9 0elon On
10 9 elimel if A On A On
11 10 onuninsuci if A On A = if A On A ¬ x On if A On A = suc x
12 8 11 dedth A On A = A ¬ x On A = suc x
13 unon On = On
14 13 eqcomi On = On
15 onprc ¬ On V
16 vex x V
17 16 sucex suc x V
18 eleq1 On = suc x On V suc x V
19 17 18 mpbiri On = suc x On V
20 15 19 mto ¬ On = suc x
21 20 a1i x On ¬ On = suc x
22 21 nrex ¬ x On On = suc x
23 14 22 2th On = On ¬ x On On = suc x
24 id A = On A = On
25 unieq A = On A = On
26 24 25 eqeq12d A = On A = A On = On
27 eqeq1 A = On A = suc x On = suc x
28 27 rexbidv A = On x On A = suc x x On On = suc x
29 28 notbid A = On ¬ x On A = suc x ¬ x On On = suc x
30 26 29 bibi12d A = On A = A ¬ x On A = suc x On = On ¬ x On On = suc x
31 23 30 mpbiri A = On A = A ¬ x On A = suc x
32 12 31 jaoi A On A = On A = A ¬ x On A = suc x
33 1 32 sylbi Ord A A = A ¬ x On A = suc x