Metamath Proof Explorer


Theorem orduniss2

Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by NM, 30-Jan-2005)

Ref Expression
Assertion orduniss2 Ord A x On | x A = A

Proof

Step Hyp Ref Expression
1 df-rab x On | x A = x | x On x A
2 incom x | x On x | x A = x | x A x | x On
3 inab x | x On x | x A = x | x On x A
4 df-pw 𝒫 A = x | x A
5 4 eqcomi x | x A = 𝒫 A
6 abid2 x | x On = On
7 5 6 ineq12i x | x A x | x On = 𝒫 A On
8 2 3 7 3eqtr3i x | x On x A = 𝒫 A On
9 1 8 eqtri x On | x A = 𝒫 A On
10 ordpwsuc Ord A 𝒫 A On = suc A
11 9 10 eqtrid Ord A x On | x A = suc A
12 11 unieqd Ord A x On | x A = suc A
13 ordunisuc Ord A suc A = A
14 12 13 eqtrd Ord A x On | x A = A