Metamath Proof Explorer


Theorem ordunisssuc

Description: A subclass relationship for union and successor of ordinal classes. (Contributed by NM, 28-Nov-2003)

Ref Expression
Assertion ordunisssuc AOnOrdBABAsucB

Proof

Step Hyp Ref Expression
1 ssel2 AOnxAxOn
2 ordsssuc xOnOrdBxBxsucB
3 1 2 sylan AOnxAOrdBxBxsucB
4 3 an32s AOnOrdBxAxBxsucB
5 4 ralbidva AOnOrdBxAxBxAxsucB
6 unissb ABxAxB
7 dfss3 AsucBxAxsucB
8 5 6 7 3bitr4g AOnOrdBABAsucB