Metamath Proof Explorer


Theorem ordunisssuc

Description: A subclass relationship for union and successor of ordinal classes. (Contributed by NM, 28-Nov-2003)

Ref Expression
Assertion ordunisssuc A On Ord B A B A suc B

Proof

Step Hyp Ref Expression
1 ssel2 A On x A x On
2 ordsssuc x On Ord B x B x suc B
3 1 2 sylan A On x A Ord B x B x suc B
4 3 an32s A On Ord B x A x B x suc B
5 4 ralbidva A On Ord B x A x B x A x suc B
6 unissb A B x A x B
7 dfss3 A suc B x A x suc B
8 5 6 7 3bitr4g A On Ord B A B A suc B