Metamath Proof Explorer


Theorem ordunisuc

Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion ordunisuc Ord A suc A = A

Proof

Step Hyp Ref Expression
1 ordeleqon Ord A A On A = On
2 suceq x = A suc x = suc A
3 2 unieqd x = A suc x = suc A
4 id x = A x = A
5 3 4 eqeq12d x = A suc x = x suc A = A
6 eloni x On Ord x
7 ordtr Ord x Tr x
8 6 7 syl x On Tr x
9 vex x V
10 9 unisuc Tr x suc x = x
11 8 10 sylib x On suc x = x
12 5 11 vtoclga A On suc A = A
13 sucon suc On = On
14 13 unieqi suc On = On
15 unon On = On
16 14 15 eqtri suc On = On
17 suceq A = On suc A = suc On
18 17 unieqd A = On suc A = suc On
19 id A = On A = On
20 16 18 19 3eqtr4a A = On suc A = A
21 12 20 jaoi A On A = On suc A = A
22 1 21 sylbi Ord A suc A = A