Metamath Proof Explorer


Theorem ordunisuc2

Description: An ordinal equal to its union contains the successor of each of its members. (Contributed by NM, 1-Feb-2005)

Ref Expression
Assertion ordunisuc2 Ord A A = A x A suc x A

Proof

Step Hyp Ref Expression
1 orduninsuc Ord A A = A ¬ x On A = suc x
2 ralnex x On ¬ A = suc x ¬ x On A = suc x
3 suceloni x On suc x On
4 eloni suc x On Ord suc x
5 3 4 syl x On Ord suc x
6 ordtri3 Ord A Ord suc x A = suc x ¬ A suc x suc x A
7 5 6 sylan2 Ord A x On A = suc x ¬ A suc x suc x A
8 7 con2bid Ord A x On A suc x suc x A ¬ A = suc x
9 onnbtwn x On ¬ x A A suc x
10 imnan x A ¬ A suc x ¬ x A A suc x
11 9 10 sylibr x On x A ¬ A suc x
12 11 con2d x On A suc x ¬ x A
13 pm2.21 ¬ x A x A suc x A
14 12 13 syl6 x On A suc x x A suc x A
15 14 adantl Ord A x On A suc x x A suc x A
16 ax-1 suc x A x A suc x A
17 16 a1i Ord A x On suc x A x A suc x A
18 15 17 jaod Ord A x On A suc x suc x A x A suc x A
19 eloni x On Ord x
20 ordtri2or Ord x Ord A x A A x
21 19 20 sylan x On Ord A x A A x
22 21 ancoms Ord A x On x A A x
23 22 orcomd Ord A x On A x x A
24 23 adantr Ord A x On x A suc x A A x x A
25 ordsssuc2 Ord A x On A x A suc x
26 25 biimpd Ord A x On A x A suc x
27 26 adantr Ord A x On x A suc x A A x A suc x
28 simpr Ord A x On x A suc x A x A suc x A
29 27 28 orim12d Ord A x On x A suc x A A x x A A suc x suc x A
30 24 29 mpd Ord A x On x A suc x A A suc x suc x A
31 30 ex Ord A x On x A suc x A A suc x suc x A
32 18 31 impbid Ord A x On A suc x suc x A x A suc x A
33 8 32 bitr3d Ord A x On ¬ A = suc x x A suc x A
34 33 pm5.74da Ord A x On ¬ A = suc x x On x A suc x A
35 impexp x On x A suc x A x On x A suc x A
36 simpr x On x A x A
37 ordelon Ord A x A x On
38 37 ex Ord A x A x On
39 38 ancrd Ord A x A x On x A
40 36 39 impbid2 Ord A x On x A x A
41 40 imbi1d Ord A x On x A suc x A x A suc x A
42 35 41 bitr3id Ord A x On x A suc x A x A suc x A
43 34 42 bitrd Ord A x On ¬ A = suc x x A suc x A
44 43 ralbidv2 Ord A x On ¬ A = suc x x A suc x A
45 2 44 bitr3id Ord A ¬ x On A = suc x x A suc x A
46 1 45 bitrd Ord A A = A x A suc x A