Metamath Proof Explorer


Theorem ordwe

Description: Membership well-orders every ordinal. Proposition 7.4 of TakeutiZaring p. 36. (Contributed by NM, 3-Apr-1994)

Ref Expression
Assertion ordwe Ord A E We A

Proof

Step Hyp Ref Expression
1 df-ord Ord A Tr A E We A
2 1 simprbi Ord A E We A