Metamath Proof Explorer


Theorem orthin

Description: The intersection of orthogonal subspaces is the zero subspace. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion orthin A S B S A B A B = 0

Proof

Step Hyp Ref Expression
1 ssrin A B A B B B
2 incom B B = B B
3 1 2 sseqtrdi A B A B B B
4 ocin B S B B = 0
5 4 sseq2d B S A B B B A B 0
6 3 5 syl5ib B S A B A B 0
7 6 adantl A S B S A B A B 0
8 shincl A S B S A B S
9 sh0le A B S 0 A B
10 8 9 syl A S B S 0 A B
11 7 10 jctird A S B S A B A B 0 0 A B
12 eqss A B = 0 A B 0 0 A B
13 11 12 syl6ibr A S B S A B A B = 0