Metamath Proof Explorer


Theorem ostth2lem1

Description: Lemma for ostth2 , although it is just a simple statement about exponentials which does not involve any specifics of ostth2 . If a power is upper bounded by a linear term, the exponent must be less than one. Or in big-O notation, n e. o ( A ^ n ) for any 1 < A . (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses ostth2lem1.1 φ A
ostth2lem1.2 φ B
ostth2lem1.3 φ n A n n B
Assertion ostth2lem1 φ A 1

Proof

Step Hyp Ref Expression
1 ostth2lem1.1 φ A
2 ostth2lem1.2 φ B
3 ostth2lem1.3 φ n A n n B
4 2re 2
5 2 adantr φ 1 < A B
6 remulcl 2 B 2 B
7 4 5 6 sylancr φ 1 < A 2 B
8 simpr φ 1 < A 1 < A
9 1re 1
10 1 adantr φ 1 < A A
11 difrp 1 A 1 < A A 1 +
12 9 10 11 sylancr φ 1 < A 1 < A A 1 +
13 8 12 mpbid φ 1 < A A 1 +
14 7 13 rerpdivcld φ 1 < A 2 B A 1
15 expnbnd 2 B A 1 A 1 < A k 2 B A 1 < A k
16 14 10 8 15 syl3anc φ 1 < A k 2 B A 1 < A k
17 nnnn0 k k 0
18 reexpcl A k 0 A k
19 10 17 18 syl2an φ 1 < A k A k
20 14 adantr φ 1 < A k 2 B A 1
21 13 rpred φ 1 < A A 1
22 21 adantr φ 1 < A k A 1
23 nnre k k
24 23 adantl φ 1 < A k k
25 22 24 remulcld φ 1 < A k A 1 k
26 25 19 remulcld φ 1 < A k A 1 k A k
27 1 ad2antrr φ 1 < A k A
28 2nn 2
29 simpr φ 1 < A k k
30 nnmulcl 2 k 2 k
31 28 29 30 sylancr φ 1 < A k 2 k
32 31 nnnn0d φ 1 < A k 2 k 0
33 27 32 reexpcld φ 1 < A k A 2 k
34 31 nnred φ 1 < A k 2 k
35 2 ad2antrr φ 1 < A k B
36 34 35 remulcld φ 1 < A k 2 k B
37 0red φ 1 < A 0
38 9 a1i φ 1 < A 1
39 0lt1 0 < 1
40 39 a1i φ 1 < A 0 < 1
41 37 38 10 40 8 lttrd φ 1 < A 0 < A
42 10 41 elrpd φ 1 < A A +
43 nnz k k
44 rpexpcl A + k A k +
45 42 43 44 syl2an φ 1 < A k A k +
46 peano2re A 1 k A 1 k + 1
47 25 46 syl φ 1 < A k A 1 k + 1
48 25 ltp1d φ 1 < A k A 1 k < A 1 k + 1
49 17 adantl φ 1 < A k k 0
50 42 adantr φ 1 < A k A +
51 50 rpge0d φ 1 < A k 0 A
52 bernneq2 A k 0 0 A A 1 k + 1 A k
53 27 49 51 52 syl3anc φ 1 < A k A 1 k + 1 A k
54 25 47 19 48 53 ltletrd φ 1 < A k A 1 k < A k
55 25 19 45 54 ltmul1dd φ 1 < A k A 1 k A k < A k A k
56 24 recnd φ 1 < A k k
57 56 2timesd φ 1 < A k 2 k = k + k
58 57 oveq2d φ 1 < A k A 2 k = A k + k
59 27 recnd φ 1 < A k A
60 59 49 49 expaddd φ 1 < A k A k + k = A k A k
61 58 60 eqtrd φ 1 < A k A 2 k = A k A k
62 55 61 breqtrrd φ 1 < A k A 1 k A k < A 2 k
63 oveq2 n = 2 k A n = A 2 k
64 oveq1 n = 2 k n B = 2 k B
65 63 64 breq12d n = 2 k A n n B A 2 k 2 k B
66 3 ralrimiva φ n A n n B
67 66 ad2antrr φ 1 < A k n A n n B
68 65 67 31 rspcdva φ 1 < A k A 2 k 2 k B
69 26 33 36 62 68 ltletrd φ 1 < A k A 1 k A k < 2 k B
70 22 recnd φ 1 < A k A 1
71 19 recnd φ 1 < A k A k
72 70 71 56 mul32d φ 1 < A k A 1 A k k = A 1 k A k
73 2cnd φ 1 < A k 2
74 35 recnd φ 1 < A k B
75 73 74 56 mul32d φ 1 < A k 2 B k = 2 k B
76 69 72 75 3brtr4d φ 1 < A k A 1 A k k < 2 B k
77 22 19 remulcld φ 1 < A k A 1 A k
78 7 adantr φ 1 < A k 2 B
79 nngt0 k 0 < k
80 79 adantl φ 1 < A k 0 < k
81 ltmul1 A 1 A k 2 B k 0 < k A 1 A k < 2 B A 1 A k k < 2 B k
82 77 78 24 80 81 syl112anc φ 1 < A k A 1 A k < 2 B A 1 A k k < 2 B k
83 76 82 mpbird φ 1 < A k A 1 A k < 2 B
84 13 rpgt0d φ 1 < A 0 < A 1
85 84 adantr φ 1 < A k 0 < A 1
86 ltmuldiv2 A k 2 B A 1 0 < A 1 A 1 A k < 2 B A k < 2 B A 1
87 19 78 22 85 86 syl112anc φ 1 < A k A 1 A k < 2 B A k < 2 B A 1
88 83 87 mpbid φ 1 < A k A k < 2 B A 1
89 19 20 88 ltnsymd φ 1 < A k ¬ 2 B A 1 < A k
90 89 nrexdv φ 1 < A ¬ k 2 B A 1 < A k
91 16 90 pm2.65da φ ¬ 1 < A
92 lenlt A 1 A 1 ¬ 1 < A
93 1 9 92 sylancl φ A 1 ¬ 1 < A
94 91 93 mpbird φ A 1