| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qrng.q |
|
| 2 |
|
qabsabv.a |
|
| 3 |
|
ostthlem1.1 |
|
| 4 |
|
ostthlem1.2 |
|
| 5 |
|
ostthlem2.3 |
|
| 6 |
|
eluz2nn |
|
| 7 |
|
fveq2 |
|
| 8 |
|
fveq2 |
|
| 9 |
7 8
|
eqeq12d |
|
| 10 |
9
|
imbi2d |
|
| 11 |
|
fveq2 |
|
| 12 |
|
fveq2 |
|
| 13 |
11 12
|
eqeq12d |
|
| 14 |
13
|
imbi2d |
|
| 15 |
|
fveq2 |
|
| 16 |
|
fveq2 |
|
| 17 |
15 16
|
eqeq12d |
|
| 18 |
17
|
imbi2d |
|
| 19 |
|
fveq2 |
|
| 20 |
|
fveq2 |
|
| 21 |
19 20
|
eqeq12d |
|
| 22 |
21
|
imbi2d |
|
| 23 |
|
fveq2 |
|
| 24 |
|
fveq2 |
|
| 25 |
23 24
|
eqeq12d |
|
| 26 |
25
|
imbi2d |
|
| 27 |
|
ax-1ne0 |
|
| 28 |
1
|
qrng1 |
|
| 29 |
1
|
qrng0 |
|
| 30 |
2 28 29
|
abv1z |
|
| 31 |
3 27 30
|
sylancl |
|
| 32 |
2 28 29
|
abv1z |
|
| 33 |
4 27 32
|
sylancl |
|
| 34 |
31 33
|
eqtr4d |
|
| 35 |
5
|
expcom |
|
| 36 |
|
jcab |
|
| 37 |
|
oveq12 |
|
| 38 |
3
|
adantr |
|
| 39 |
|
eluzelz |
|
| 40 |
39
|
ad2antrl |
|
| 41 |
|
zq |
|
| 42 |
40 41
|
syl |
|
| 43 |
|
eluzelz |
|
| 44 |
43
|
ad2antll |
|
| 45 |
|
zq |
|
| 46 |
44 45
|
syl |
|
| 47 |
1
|
qrngbas |
|
| 48 |
|
qex |
|
| 49 |
|
cnfldmul |
|
| 50 |
1 49
|
ressmulr |
|
| 51 |
48 50
|
ax-mp |
|
| 52 |
2 47 51
|
abvmul |
|
| 53 |
38 42 46 52
|
syl3anc |
|
| 54 |
4
|
adantr |
|
| 55 |
2 47 51
|
abvmul |
|
| 56 |
54 42 46 55
|
syl3anc |
|
| 57 |
53 56
|
eqeq12d |
|
| 58 |
37 57
|
imbitrrid |
|
| 59 |
58
|
expcom |
|
| 60 |
59
|
a2d |
|
| 61 |
36 60
|
biimtrrid |
|
| 62 |
10 14 18 22 26 34 35 61
|
prmind |
|
| 63 |
62
|
impcom |
|
| 64 |
6 63
|
sylan2 |
|
| 65 |
1 2 3 4 64
|
ostthlem1 |
|