Metamath Proof Explorer


Theorem osumcllem10N

Description: Lemma for osumclN . Contradict osumcllem9N . (Contributed by NM, 25-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses osumcllem.l ˙ = K
osumcllem.j ˙ = join K
osumcllem.a A = Atoms K
osumcllem.p + ˙ = + 𝑃 K
osumcllem.o ˙ = 𝑃 K
osumcllem.c C = PSubCl K
osumcllem.m M = X + ˙ p
osumcllem.u U = ˙ ˙ X + ˙ Y
Assertion osumcllem10N K HL X A Y A p A ¬ p X + ˙ Y M X

Proof

Step Hyp Ref Expression
1 osumcllem.l ˙ = K
2 osumcllem.j ˙ = join K
3 osumcllem.a A = Atoms K
4 osumcllem.p + ˙ = + 𝑃 K
5 osumcllem.o ˙ = 𝑃 K
6 osumcllem.c C = PSubCl K
7 osumcllem.m M = X + ˙ p
8 osumcllem.u U = ˙ ˙ X + ˙ Y
9 simp11 K HL X A Y A p A ¬ p X + ˙ Y K HL
10 simp2 K HL X A Y A p A ¬ p X + ˙ Y p A
11 10 snssd K HL X A Y A p A ¬ p X + ˙ Y p A
12 simp12 K HL X A Y A p A ¬ p X + ˙ Y X A
13 3 4 sspadd2 K HL p A X A p X + ˙ p
14 9 11 12 13 syl3anc K HL X A Y A p A ¬ p X + ˙ Y p X + ˙ p
15 vex p V
16 15 snss p X + ˙ p p X + ˙ p
17 14 16 sylibr K HL X A Y A p A ¬ p X + ˙ Y p X + ˙ p
18 17 7 eleqtrrdi K HL X A Y A p A ¬ p X + ˙ Y p M
19 3 4 sspadd1 K HL X A Y A X X + ˙ Y
20 19 3ad2ant1 K HL X A Y A p A ¬ p X + ˙ Y X X + ˙ Y
21 simp3 K HL X A Y A p A ¬ p X + ˙ Y ¬ p X + ˙ Y
22 20 21 ssneldd K HL X A Y A p A ¬ p X + ˙ Y ¬ p X
23 nelne1 p M ¬ p X M X
24 18 22 23 syl2anc K HL X A Y A p A ¬ p X + ˙ Y M X