| Step |
Hyp |
Ref |
Expression |
| 1 |
|
osumcl.p |
|
| 2 |
|
osumcl.o |
|
| 3 |
|
osumcl.c |
|
| 4 |
|
nonconne |
|
| 5 |
|
simpl1 |
|
| 6 |
|
simpl2 |
|
| 7 |
|
eqid |
|
| 8 |
7 3
|
psubclssatN |
|
| 9 |
5 6 8
|
syl2anc |
|
| 10 |
|
simpl3 |
|
| 11 |
7 3
|
psubclssatN |
|
| 12 |
5 10 11
|
syl2anc |
|
| 13 |
7 1
|
paddssat |
|
| 14 |
5 9 12 13
|
syl3anc |
|
| 15 |
7 2
|
2polssN |
|
| 16 |
5 14 15
|
syl2anc |
|
| 17 |
|
df-pss |
|
| 18 |
|
pssnel |
|
| 19 |
17 18
|
sylbir |
|
| 20 |
|
df-rex |
|
| 21 |
19 20
|
sylibr |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
|
eqid |
|
| 25 |
|
eqid |
|
| 26 |
22 23 7 1 2 3 24 25
|
osumcllem9N |
|
| 27 |
|
simp11 |
|
| 28 |
|
simp12 |
|
| 29 |
27 28 8
|
syl2anc |
|
| 30 |
|
simp13 |
|
| 31 |
27 30 11
|
syl2anc |
|
| 32 |
14
|
3adantr3 |
|
| 33 |
32
|
3adant3 |
|
| 34 |
7 2
|
polssatN |
|
| 35 |
27 33 34
|
syl2anc |
|
| 36 |
7 2
|
polssatN |
|
| 37 |
27 35 36
|
syl2anc |
|
| 38 |
|
simp23 |
|
| 39 |
37 38
|
sseldd |
|
| 40 |
|
simp3 |
|
| 41 |
22 23 7 1 2 3 24 25
|
osumcllem10N |
|
| 42 |
27 29 31 39 40 41
|
syl311anc |
|
| 43 |
26 42
|
pm2.21ddne |
|
| 44 |
43
|
3exp |
|
| 45 |
44
|
3expd |
|
| 46 |
45
|
imp32 |
|
| 47 |
46
|
rexlimdv |
|
| 48 |
21 47
|
syl5 |
|
| 49 |
16 48
|
mpand |
|
| 50 |
49
|
necon1bd |
|
| 51 |
4 50
|
mpi |
|