Metamath Proof Explorer


Theorem osumcllem2N

Description: Lemma for osumclN . (Contributed by NM, 25-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses osumcllem.l ˙ = K
osumcllem.j ˙ = join K
osumcllem.a A = Atoms K
osumcllem.p + ˙ = + 𝑃 K
osumcllem.o ˙ = 𝑃 K
osumcllem.c C = PSubCl K
osumcllem.m M = X + ˙ p
osumcllem.u U = ˙ ˙ X + ˙ Y
Assertion osumcllem2N K HL X A Y A p U X U M

Proof

Step Hyp Ref Expression
1 osumcllem.l ˙ = K
2 osumcllem.j ˙ = join K
3 osumcllem.a A = Atoms K
4 osumcllem.p + ˙ = + 𝑃 K
5 osumcllem.o ˙ = 𝑃 K
6 osumcllem.c C = PSubCl K
7 osumcllem.m M = X + ˙ p
8 osumcllem.u U = ˙ ˙ X + ˙ Y
9 simpl1 K HL X A Y A p U K HL
10 simpl2 K HL X A Y A p U X A
11 simpr K HL X A Y A p U p U
12 11 snssd K HL X A Y A p U p U
13 3 4 paddssat K HL X A Y A X + ˙ Y A
14 13 adantr K HL X A Y A p U X + ˙ Y A
15 3 5 polssatN K HL X + ˙ Y A ˙ X + ˙ Y A
16 9 14 15 syl2anc K HL X A Y A p U ˙ X + ˙ Y A
17 3 5 polssatN K HL ˙ X + ˙ Y A ˙ ˙ X + ˙ Y A
18 9 16 17 syl2anc K HL X A Y A p U ˙ ˙ X + ˙ Y A
19 8 18 eqsstrid K HL X A Y A p U U A
20 12 19 sstrd K HL X A Y A p U p A
21 3 4 sspadd1 K HL X A p A X X + ˙ p
22 9 10 20 21 syl3anc K HL X A Y A p U X X + ˙ p
23 22 7 sseqtrrdi K HL X A Y A p U X M
24 1 2 3 4 5 6 7 8 osumcllem1N K HL X A Y A p U U M = M
25 23 24 sseqtrrd K HL X A Y A p U X U M