Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
osumcllem8N
Next ⟩
osumcllem9N
Metamath Proof Explorer
Ascii
Unicode
Theorem
osumcllem8N
Description:
Lemma for
osumclN
.
(Contributed by
NM
, 24-Mar-2012)
(New usage is discouraged.)
Ref
Expression
Hypotheses
osumcllem.l
⊢
≤
˙
=
≤
K
osumcllem.j
⊢
∨
˙
=
join
⁡
K
osumcllem.a
⊢
A
=
Atoms
⁡
K
osumcllem.p
⊢
+
˙
=
+
𝑃
⁡
K
osumcllem.o
⊢
⊥
˙
=
⊥
𝑃
⁡
K
osumcllem.c
⊢
C
=
PSubCl
⁡
K
osumcllem.m
⊢
M
=
X
+
˙
p
osumcllem.u
⊢
U
=
⊥
˙
⁡
⊥
˙
⁡
X
+
˙
Y
Assertion
osumcllem8N
⊢
K
∈
HL
∧
X
⊆
A
∧
Y
⊆
A
∧
X
⊆
⊥
˙
⁡
Y
∧
X
≠
∅
∧
p
∈
A
∧
¬
p
∈
X
+
˙
Y
→
Y
∩
M
=
∅
Proof
Step
Hyp
Ref
Expression
1
osumcllem.l
⊢
≤
˙
=
≤
K
2
osumcllem.j
⊢
∨
˙
=
join
⁡
K
3
osumcllem.a
⊢
A
=
Atoms
⁡
K
4
osumcllem.p
⊢
+
˙
=
+
𝑃
⁡
K
5
osumcllem.o
⊢
⊥
˙
=
⊥
𝑃
⁡
K
6
osumcllem.c
⊢
C
=
PSubCl
⁡
K
7
osumcllem.m
⊢
M
=
X
+
˙
p
8
osumcllem.u
⊢
U
=
⊥
˙
⁡
⊥
˙
⁡
X
+
˙
Y
9
n0
⊢
Y
∩
M
≠
∅
↔
∃
q
q
∈
Y
∩
M
10
1
2
3
4
5
6
7
8
osumcllem7N
⊢
K
∈
HL
∧
X
⊆
A
∧
Y
⊆
A
∧
X
⊆
⊥
˙
⁡
Y
∧
X
≠
∅
∧
p
∈
A
∧
q
∈
Y
∩
M
→
p
∈
X
+
˙
Y
11
10
3expia
⊢
K
∈
HL
∧
X
⊆
A
∧
Y
⊆
A
∧
X
⊆
⊥
˙
⁡
Y
∧
X
≠
∅
∧
p
∈
A
→
q
∈
Y
∩
M
→
p
∈
X
+
˙
Y
12
11
exlimdv
⊢
K
∈
HL
∧
X
⊆
A
∧
Y
⊆
A
∧
X
⊆
⊥
˙
⁡
Y
∧
X
≠
∅
∧
p
∈
A
→
∃
q
q
∈
Y
∩
M
→
p
∈
X
+
˙
Y
13
9
12
syl5bi
⊢
K
∈
HL
∧
X
⊆
A
∧
Y
⊆
A
∧
X
⊆
⊥
˙
⁡
Y
∧
X
≠
∅
∧
p
∈
A
→
Y
∩
M
≠
∅
→
p
∈
X
+
˙
Y
14
13
necon1bd
⊢
K
∈
HL
∧
X
⊆
A
∧
Y
⊆
A
∧
X
⊆
⊥
˙
⁡
Y
∧
X
≠
∅
∧
p
∈
A
→
¬
p
∈
X
+
˙
Y
→
Y
∩
M
=
∅
15
14
3impia
⊢
K
∈
HL
∧
X
⊆
A
∧
Y
⊆
A
∧
X
⊆
⊥
˙
⁡
Y
∧
X
≠
∅
∧
p
∈
A
∧
¬
p
∈
X
+
˙
Y
→
Y
∩
M
=
∅